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Resumo 

Considerando a importância da indústria pedreira para qualquer economia, o seu continuo 

progresso é de interesse significante. Para melhorar a sua indústria através dos seus produtos, Fravizel 

pretende usar ferramentas de metrologia Tridimensional para obter modelos 3D dos blocos de pedra 

extraídos e tratados nas pedreiras. Modelos 3D dos blocos não-processados podem ser usados para 

otimizar os processos de tratamento intermediários, através da identificação de falhas e os cálculos 

para os cortes respetivamente necessários, enquanto que modelos 3D dos blocos processados podem 

ser usados para publicitar. Esta tese oferece uma solução para o design dos scanners 3D que tratam 

da obtenção de dados necessários para a reconstrução 3D por visão computacional. O primeiro design 

de scanner consiste em integrar um sistema ótico com as máquinas de corte da Fravizel, visa a aliviar 

o custo de novas infraestruturas. O segundo design de scanner consiste num sistema ótico capaz de 

adquirir imagens enquanto circula o bloco de pedra, para permitir reconstruir um modelo 3D de alta 

qualidade, sem buracos ou pontos cegos para publicitar. A informação recolhida pelos scanners 

consiste no conjunto de imagens, necessárias ao processo de reconstrução, e nas calibrações 

intrínsecas e extrínsecas com fins de aumentar a eficiência do mesmo processo. Ambos os scanners 

recolheram data funcional embora nem sempre ideal para o processo de reconstrução. O primeiro 

scanner obteve imagens com 12 MP e em 461.14 segundos obteve-se uma calibração intrínseca fraca, 

resultando num erro medio absoluto de 33.99 pixels. O segundo scanner obteve imagens com 8MP e 

em 124.03 segundos obteve-se uma calibração intrínseca forte, resultando num erro medio absoluto 

de 0.13 pixels. As estimações de pose em ambos os scanners foram mais consistentes usando 

algoritmos sem aplicação de RANSAC, obtendo calibrações corretas com erro medio absoluto entre 

0.27 até 0.43 pixels no primeiro scanner e entre 0.14 até 8.87 pixels no segundo scanner. 

Palavras-chave: Indústria Pedreira, Metrologia 3D, Scanner 3D, Visão Computacional, Estimação de 

Pose, Calibração de Câmara 
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Abstract 

Given the stone industry vitality to any economy, its continuous progress is of significant interest. 

To improve their products and industry, the company, Fravizel, desires to use 3D metrology tools in 

order to obtain 3D models of the stone blocks extracted in quarries. 3D models of the unprocessed 

stone blocks could be used to optimize intermediary processes, such as identifying flaws and calculating 

required cuts and 3D models of the processed stone blocks could be used for advertising. This thesis 

offers a solution for the design of 3D scanners that acquires the information required for 3D 

reconstruction through computer vision. The first scanner consists of integrating an optical system to 

Fravizel’s machines, alleviating the cost of new infrastructures. The second scanner consists of a 

camera system capable of acquiring images while circling the stone block, for an advertisable gapless 

high-quality 3D model. The data, the proposed scanners acquire, consists of a set of images required 

for reconstruction and the calibrations of the image sensors that could increase the efficiency of the 

reconstruction process. Both scanner configurations yielded positive yet not ideal data for the 

reconstruction step. The first scanner obtains 12Mp images and was poorly intrinsically calibrated in 

461.14 seconds with a mean-absolute-error of 33.99 pixels. The second scanner obtains 8Mp images 

and was well intrinsically calibrated in 124.03 seconds with a mean-absolute-error of 0.13 pixels. Pose 

estimations across both scanners were more reliable using algorithms without RANSAC obtaining 

correct calibrations with mean-absolute errors of 0.27-0.43 pixels in the first scanner and 0.14-8.87 

pixels in the second scanner. 

Keywords: Quarry industry, 3D Metrology, 3D Scanner, Computer Vision, Pose Estimation, Camera 

Calibration 
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1 Introduction 

This chapter will provide the context regarding the industry we chose to improve, why it was 

chosen and the way through which we intent to contribute to its development. The first section will supply 

the context of the activity intended to be improved, clarifying the importance of the industry involved in 

order to justify the need for its development. The observed problems we seek to minimize are then 

defined in the second section. After describing the context and problem, the methods chosen to minimize 

the problems are described in the third section. The final section delineates the structure that the rest of 

this thesis will follow. 

1.1 Context 

Mineral resources are highly sought out recourses generated by natural geological processes. 

These processes are large scaled, slow, outside the control of humanity and not replicable, making 

these resources, practically speaking, nonrenewable [1]. 

Humanity has used mineral resources since pre-historic time. In fact, the importance of our use 

of these recourses has led to a commonly used designation for one of the earliest periods of our history, 

the Stone Age. Pre-historic humans used stones they simply found and collected, only when we began 

looking for minerals that required extraction did, we developed mining practices. Oldest quarries found 

dates back to ancient Egypt. Over 200 quarries haven been studied and dated between the Late Pre-

dynastic Period and the Late Roman Period, covering 3500 years [2]. We have continuously evolved 

our use of more and more mineral resources, leading to subsequent periods to be referred to as the 

Bronze Age and the Iron Age, as we updated our tools and methods with better minerals. Presently we 

have found applications for most discovered natural resources. Mineral recourses can be categorized 

based on their application, fuel minerals, industrial minerals and metallic minerals [3]. Fuel minerals are 

minerals used as a source of energy, oil, coal and uranium minerals used to produce vehicle fuel, 

thermal energy and nuclear energy, respectively. Metallic minerals are minerals that contain significant 

concentrations of metals, such as iron, gold, silver and bronze. Metals are used in nearly all industries, 

every day we use tools made of metallic materials, from cutlery to heavy machinery, even our building 

are constructed not just out of industrial minerals but also metallic ones. Industrial minerals are minerals, 

with physical and chemical properties that make them useful a wide arrange of areas. Industrial 

processes and production of chemicals and fertilizers make use of chemical properties of industrial 

minerals. Construction has been the most common application to minerals with good aesthetics and 

physical properties [3].  

1.2 Problem 

The limestone is a rock, mostly composed of the mineral calcite, commonly used worldwide in 

construction, used structurally or decoratively, and in the production of cement, one of the most 
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important building materials. Also the Portuguese pavements, made mostly from limestone, are a 

significant cultural reference, as can be seen in the University of Coimbra in a mosaic with the image of 

Saint-Queen Elizabeth of Portugal (Figure 1). Given the economic importance of these resources to 

worldwide necessities and Portuguese culture, the extraction of limestone is an activity worth improving. 

 

Figure 1: Pavement mosaic of Saint-Queen Elizabeth of Portugal in Coimbra [4] 

In a quarry the limestone is removed from its bedrock in large parallelepiped blocks. These blocks 

must be processed before they can be sold, one of the steps in this process involves cutting the block 

to remove flaws or reshape it into an acceptable shape. The ideal product is a properly shaped 

rectangular parallelepiped of limestone. A picture of limestone quarry is presented in Figure 2. 

 

Figure 2: A Limestone Quarry [5] 

Due to the size of the limestone blocks, they are difficult to maneuver and analyze. Due to these 

difficulties, processing the blocks is time consuming. Maneuvering the blocks can only be accomplished 

using cranes and trucks, while analyzing the blocks for flaws is done through a rough visual inspection, 

which determines the position of the cuts needed resulting in possible waste or mistakes.  

To perform cuts on these large blocks the quarries use heavy machinery equipped with saws, 

known as Fravizel’s machine, (Figure 3). The saw has limitations, it only moves on rails restricting its 

work area, it is positioned by the workers and it can only perform cuts transversal to its rails. This results 
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in a process where, the stone blocks must be placed in a row between the machine’s rails, the saw is 

positioned visually and if cuts in more than one direction are required the block must be moved and 

rotated for each direction. 

 

Figure 3: Fravizel's cutting machine 

After the blocks has been shaped to an acceptable shape, as exemplified in Figure 4, the quarry 

wants to advertise the block’s qualities as best it can. Advertising their products qualities is also hindered 

by the sheer size of the blocks. In order to capture the entirety of the block, a photograph must be taken 

from a distance that doesn’t allow the quality of the block’s surface to be seen. 

Summarizing, there are shortcomings in the methods through which the stone blocks are 

processed and advertised. Concerning the stones processing, the duration and waste can be reduced 

by automating both the analysis of the blocks and the operation of the cutting machine. The advertising 

limitations can be lessened by generating a new medium or platform through which it is possible to 

portray the shape and surface qualities of the stone block without sacrificing one or the other. 

 

Figure 4: Limestone blocks 
(a) Rough [6]; (b) Clean [7] 
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This automation can be accomplished by acquiring a digital three-dimensional model of the blocks 

allowing the analysis to be computationally accomplished. The scope of this thesis resides within the 

data acquisition step of a 3D model acquisition process. In other words, designing and physical installing 

the hardware required as well as implementing software for the strict purpose of acquiring data required 

for 3D reconstruction, highlighted in Figure 5. 

 
Figure 5: Diagram of proposed solution 

1.3 Objective 

This thesis intends to be a step towards improving the quarry industry, by increasing the efficiency 

and safety of one of its processes. Therefore, this thesis statement is:  

Design and implement a 3D scanning system that optimizes the following 3D 

reconstruction, improving its efficiency and viability. 

 The research question for which this work intends to contribute is the following:  

• How effectively does the proposed solution collect the data required for 3D reconstruction? 

In order to answer the research question, the following complementary questions should also be 

answered: 

Q.1. What type of scanner is most viable towards replacing the workers visual analysis of the stone 

blocks? 

Q.2. Can the proposed solution be designed around the Fravizel’s machine in order to use the 

existing structure and functionalities? 

Q.3. What other mediums can be used to advertise the blocks? 

1.4 Structure 

This dissertation is organized as follows: Chapter 2 delineates an overview of the various types 

of 3D scanners developed and employed over the years. This overview shows the evolution of the 

scanners, displaying the developments made by new scanners, with respect to the limitations of the 

previous existing scanners. A classification based on their operating principals and technologies is 

established along with their respective advantages and disadvantages. This chapter goes on to explain 

the calibration of image sensors which are used in certain types of scanners.  



6 
 

After researching the various types of scanners and choosing the appropriate type for our 

application, the following chapter 3 describes the configurations used in the process of developing the 

final scanners. Initial set ups used basic components to merely test the viability of ideas, as previous 

configuration’s limitations are addressed, new scanner configurations are developed and explained. The 

calibrations are performed using different software and methods, until settling on a final programing 

language that allows to compare different available calibration pipelines. 

The results are presented in chapter 4 to allow an analysis to be conducted regarding the 

hardware configurations and the calibration methods. The hardware configurations are evaluated by 

examining the quality of the images acquired with regards to their synchronicity, resolution, scanning 

reliability. The speed and accuracy of different intrinsic and extrinsic calibration algorithms are displayed, 

in order to assess the most accurate calibrations with regards to the time it takes to calculate, to ensure 

an increase in the efficiency of the quarry process. Finally, in chapter 5 the conclusions based on the 

discussion of the results are presented and possible future steps to improve on the work done here are 

discussed. 
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Chapter 2 

2  Literature Review 

2.1 Contact Scanning 

2.2 Non-Contact Scanning 

2.3 Calibration  
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2 Literature Review 

Three-dimensional reconstruction is the process of determining the three-dimensional profile and 

coordinates of the surface points of an object. This application is at the core of a wide variety of fields. 

The construction of the three-dimensional profile of an object may be done through a variety of data. 

The process of collecting the required data for 3D reconstruction is referred to as 3D Scanning. Three-

dimensional scanning can be divided into 2 categories: Methods that required physical interaction with 

the object, contact scanning, and methods that do not physically interact with the object, non-contact 

scanning [8].  

2.1 Contact Scanning 

Scanning involving physical interaction is commonly categorized as contact scanning. Contact 

scanning is a straightforward process, the object is fixed to a precision flat surface plate or fixture while 

a high precision kinematic chain system repeatedly touches the objects surface recording 

measurements of the location of the kinematic chain’s probe to be used as data for the 3D 

reconstruction. Various types of kinematic systems can be used for this methodology.  

The most common configuration is a system of rigid arms, mounted with rails, glide along each 

other on a constant perpendicular angle. The position of each arm on its respective rail is registered at 

every point, this data allows the calculation of the 3D coordinates of the tip of the arm that is in contact 

with the object resulting in a mapping of its surface point by point. An example of this are the coordinate-

measuring machines more commonly called CMM scanners [9]. 

More complex configuration using translational and rotational joints have been designed to 

achieve higher accuracy and higher maneuverability that would allow scanning of objects with higher 

order of complexities. With the improved knowledge over kinematic chains and forward kinematics any 

chain built from a mixture of prismatic and rotational joints can be researched for improvements over 

the common CMM configuration [10]. Configurations using rotation joint and parallel mechanisms have 

been tested to achieve better results than more traditional CMMs [11]. 

2.1.1 Introduction 

An example of a contact 3D Scanning device is the coordinate measuring machine, CMM, this 

system is used for measuring the physical geometric aspect of an object. A CMM operates on a fixed 

platform where the object is set and immobilized. An articulated mechanical arm is equipped with a 

probing system, this arm’s probe position can be controlled manually by an operator or via computer 

programming. The rigid sections of the arm are connected orthogonally to each other, forming a 

traditional three-dimensional coordinate system, where each section corresponds to axis X, Y or Z. To 

measure the value of the probe’s coordinates in the systems Cartesian reference frame, each bone has 

a scale system for each coordinate. The component of the CMM that physically interacts with the surface 
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being scanned is attached at the end of the last section of the mechanical arm. This component is 

commonly designated as the probing system. The mechanical arm movement comes from the 

translations of each of its sections along their respective rails. The rails come equipped with a scale that 

returns the values of the probe’s positional coordinates on its corresponding axis. Reading all three 

scales gives a complete determination of the probes position in the systems reference frame [12][9].  

Coordinate measuring machine are often composed of three main systems. The machine main 

body which includes the three axes of motion, the probing system which is used to touch the object and 

the computer system to collect the data, control the movement of the machine body and typically used 

as an interface between operator and the scanner. 

Counter measuring machines bodies have a high variety of configurations and sizes available. In 

1950s the Ferranti company in Scotland created the first CMM, however this contact scanner is only 

had 2 axes of motion. The first three-dimensional version of a contact scanner would premiere in Italy 

in the 1960s [12][13].  

2.1.2 Hardware 

CMM systems consist of two system, the kinematic system that composes the main body of the 

machine and the probing system that interacts with the object.  

Kinematic System - Currently the most common configurations of the modern coordinate 

measuring machine use a bridge type structure. The bridge is composed of a horizontal beam supported 

by two vertical beams. One of the vertical beams is attached to the systems platform, where the object 

will lie, with its motion controlled along a rail attached to one side of the table. The other vertical beam 

rests on the table moving along the edge of the opposite side of the table, simply to assist the support 

of the horizontal beam. The horizontal beam supports a carriage allowing motion along the beam. The 

movement of the vertical beams along the table’s guide rail and the movement of the carriage along the 

horizontal beam are perpendicular forming an XY plane. The last axis, for the Z coordinate, is formed 

by the vertical movement of a last beam along the center of the carriage, supporting a probing system. 

Finally, the probing system is built on the end of this vertical beam corresponding to the Z-axis, forming 

the sensing device that will touch the object. This is in essence a kinematic chain composed of four 

bones connected by three prismatic joints. The combined movement of the vertical beams along the 

side of the table (one of the XY-axis), the carriage along the horizontal beam (the other XY-axis) and 

the last beam moving vertically through the carriage (Z-axis) delimit the work area or measuring envelop 

of the CMM [9].  

A variant of the machine body of the CMM is a kinematic chain with rotational joints connecting 

the bones instead of linear scaled guide rails, providing angular readings from the joints of the arm 

instead of linear readings of the positions of the arm’s bones with respect to one another. While the 

linear readings directly give the coordinates of the probe’s location in the reference frame, the angular 

reading are used to calculate the coordinates of the probe using basic forward kinematics. These 

mechanical arms with rotational joints are not constricted by the need for a fixed platform or bed, 
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conferring the scanner a level of portability and flexibility not available in traditional CMMs. The scanners 

flexibility results in the capacity to scan more complex objects, with steeper curves, concave and convex 

shapes. 

Probing system – The most common type of probe system used nowadays is the electronic touch-

trigger probe system. The accuracy and precision of measurements improved drastically with the 

creation of the touch-trigger probe by David McMurtry [14]. A probe is essential consists of three parts, 

a system of displacement transducer, a suspension structure and a stylus. The stylus is a relatively long 

and slender shaft with a sphere at the end that is placed in contact with the surface. The sphere is the 

ideal shape to allow acceptably accurate measurements over a wide range of surfaces. New probe 

models can be dragged along a surface and register the position data at specified intervals. This method 

of CMM inspection is often more accurate and faster than conventional touch-probes [12]. 

2.1.3 Considerations 

Contact systems applicability is limited due to its physical approach. The used methodology 

requires the mapping of the surface point by point limiting the speed of the process, the dimensions and 

resistance of the object.  

Since CMM scanners operate point by point, scanning each reading is accomplished by moving 

the probe to a new position and then recording the location. Given the necessity of high precision control 

of the kinetic chain, the fastest contact systems operates at a few hundred hertz [14][15]. The range of 

the scanner’s work area limits the dimensions of the object. The impracticality of building larger and 

larger contact scanners makes these methods less suitable for larger objects.  

The repeated physical interaction required for accurate mapping also makes this process highly 

unsuitable to sensitive or fragile objects, such as antiques, and inapplicable to non-rigid objects such as 

objects made of cloth or textile. All these limitations developed a need for faster and ranged 3D scanning 

systems. 

2.2 Non-Contact Scanning 

In order to collect information on an object’s shape without physically interaction, non-contact 

scanners were developed using known properties of several types of emissions such as radiation and 

sounds by detecting or recording their interaction with the object. Non-contact scanners are divided into 

two categories, active and passive [16]. Scanning systems are categorized as active if they are 

responsible for the emissions, they detect in the process of collecting data. Scanning systems are 

categorized as passive if they rely only on ambient radiation such as visible light spectrum. 
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2.2.1 Active Scanners 

Non-contact active systems collect data regarding object’s dimensions by emitting radiation or 

light/sound at the object and detecting the radiation that passed through the object, such as x-ray 

techniques or the reflection of the light/sound, such as camera or sonar systems. Time-of-flight, 

triangulation and phase measurement are examples of methods used to calculate the distance or slope 

distribution of a surface with the detected information from the emissions sent towards the object [17]. 

Time-of-flight is an active measuring method that consists in the emission of a laser or sound with known 

travel speed and timing the return of the reflected emission. Phase measurement works similarly to the 

time-of-flight method measuring the difference in the phase between the emitted signal and detected 

signal instead of the time, translating to the slope distribution of a surface instead of direct distance to 

emitter [18][19]. Triangulation is an active measuring method that consists in the emission of a laser at 

the object with the simultaneous recording of the incident area. The emitter, the camera and the point 

where the laser contacts with the object are the three vertices of a triangle. Using the known distance 

between emitter and camera, the angle of the projected laser and the images captured by the camera 

we can fully define the triangle’s dimensions and therefore the coordinates of the laser incidence with 

the object [17]. The speed of these scanners will be considerably faster than contact scanners given the 

lack of need to physically interact with the object, but how much faster depends on the method, hardware 

and the type data collected for the reconstruction. Active scanners are varied in hardware and operating 

principles, from a simple set up consisting of a digital camera and an emitter acquiring images for 

reconstruction through triangulation, to more technically specific system such as 3D terrestrial laser 

scanners based on the various measuring principles mentions above. Reliable 3D active scanners have 

been designed using common electronic devices, namely cameras, common video projectors or laser 

emitters, resulting in very cost-effective reconstructions [19][20]. On the other side of the active scanner 

spectrum, there are 3D terrestrial laser scanners, taking time-of-flight, phase or triangulation 

measurements at high speeds from 1000 to 500k Hz [21][22]. 

2.2.2 Passive Scanners 

Non-contact passive systems collect data regarding object’s dimensions by detecting naturally 

available emissions, such as ambient radiation, reflected by the object. The most practical systems in 

this category involve image sensors detecting the ambient radiations in the visible spectrum, through 

photogrammetric processes[23]. The most common type of passive scanner are basic cameras that 

acquire simple images of the object, with no use of projections or laser to enhance the data in the 

images, Figure 6-b. The reconstruction process is done through triangulation with the camera poses 

and the corresponding features between the respective acquired images, as shown in Figure 6-a. 



12 
 

 

Figure 6: Passive Scanner process 
Top-Feature Triangulation [24]; Bottom-Image 3D reconstruction [25] 

2.2.3 Considerations 

Compared to contact scanners, non-contact scanners can present several advantages, such as 

speed, economic cost, operational difficulty, thoroughness and the lack of physical interaction with the 

object. This suggests that non-contact scanners are more suitable to our intended applications.  

Active scanners function based on the detection of an emitted signal. The emission’s detection 

can be rife with noise in such harsh conditions as that of a quarry. This mean that active scanners are 

more suitable when there are less noise-inducing conditions. However, passive scanners function based 

on the detection of ambient radiation, namely natural radiation in the visible spectrum, making them 

more reliable in more arbitrary work conditions, relative to active scanners. 

2.3 Calibrations 

Image sensors used in passive scanner require two different types of calibrations. An intrinsic 

calibration to determine the internal parameters of the image sensor and an extrinsic calibration to 

determine the pose of the image sensor, the internal parameters remain constant while the pose must 

be estimated for of each image acquisition. 
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2.3.1 Intrinsic Calibration 

The intrinsic parameters are the internal specifications of the image sensor during the time of the 

image acquisitions. 

 

Figure 7: Intrinsic Parameters 
f = focal length; P = Principal Point [23] 

For the pinhole model of optical imaging, depicted in Figure 7, the camera equation to obtain a 

three-dimensional point in the image plane is: 

𝜆 [
𝑥
𝑦
1
] = 𝑃 [

𝑋𝑤
𝑌𝑤
𝑍𝑤
1

] = 𝐾[𝑅 𝑡] [

𝑋𝑤
𝑌𝑤
𝑍𝑤
1

] =  [
𝑓𝑥 𝑠 𝑐𝑥
0 𝑓𝑦 𝑐𝑦
0 0 1

] [

𝑟11
𝑟21
𝑟31

𝑟12
𝑟22
𝑟32

𝑟13
𝑟23
𝑟33

𝑡1
𝑡2
𝑡3

] [

𝑋𝑤
𝑌𝑤
𝑍𝑤
1

]  2.1 

Where 𝜆 is a nonzero scale factor; (𝑥, 𝑦) are the point’s coordinates in the image coordinate 

system; (𝑥𝑤 , 𝑦𝑤 , 𝑧𝑤) are the point’s coordinates in the world coordinate system; P is the camera matrix 

composed of 𝐾[𝑅 𝑡]. 

K is an upper triangular matrix containing the intrinsic parameters, properly referred to as the 

matrix of the intrinsic camera parameters. The intrinsic parameters, 𝑓𝑥 and 𝑓𝑦 are the focal lengths in the 

x-axis and y-axis directions respectively; (𝑐𝑥, 𝑐𝑦) is the principle point coordinates; and 𝑠 is a skew 

parameter that corrects for tilted pixels, safely assumed to be zero for most cameras [23]. 

R is the 3x3 rotation matrix and t is the 3x1 translation matrix that encodes the orientation and 

positions of the camera, in the world coordinate system, these are the extrinsic parameters further 

explained later. 

 Calibration method: 

Determining intrinsic parameters can be accomplished in two main steps: 

1. Computing the camera matrix P through known scene points coordinates, known as 

the resection problem. 

2. Factorizing P into 𝐾 and [𝑅 𝑡] using RQ-factorization. 
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First step - The resection problem 

Assuming the scene points 𝑋𝑖 and their projections  𝑥𝑖 are known, the goal is to solve: 

𝜆𝑖𝑥𝑖 = 𝑃𝑋𝑖  2.2 

Where 𝜆𝑖 and P are unknown. Each point gives three equations and one additional unknown 𝜆𝑖. 

Therefore, we need at least six points to be able to define matrix P’s 12 elements.  

The direct linear transformation approach can be used to solve the equations. Direct linear 

transformation formulates a homogeneous linear system of equations and solves this system by finding 

a null space of the systems matrix. Due to noise in the measurements, the system will not wield an exact 

solution. Therefore, we will search for the solution solving for a homogeneous least squares problem. 

Singular value decomposition (SVD) computes eigenvectors to solve the homogeneous system [26]. 

Succinctly, computing P is achieved by firstly establishing a linear homogeneous system, 𝐶𝑝 = 0, where 

p is a vector composed from the values of matrix P, that lies in the null space of C, therefore applying a 

singular value decomposition to C grants a solution to p, and by consequence to the matrix P as well. 

Second step – RQ-factorization of P 

The now known camera matrix P must be factorized so we can extract the elements of matrix of 

intrinsic parameters, K. Knowing that the matrix K is an upper right triangular matrix and matrix R is an 

orthogonal matrix allows the use of the RQ-factorization. 

RQ-factorization theorem says that for an n-by-n matrix there is an orthogonal matrix Q and a 

right triangular matrix R such that 𝐴 = 𝑅𝑄 . 

Splitting the camera matrix P into two portions such that: 

𝑃 = 𝐾[𝑅 𝑡] ⇔  2.3 

⟺ [𝐴 𝑎] = 𝐾[𝑅 𝑡] ⟹   

⟹ 𝐴 = 𝐾[𝑅]  2.4 

Where matrix A is composed of the first three columns of matrix P, vector [𝑎] is the last column 

of matrix P, K is the three-by-three upper triangular matrix with intrinsic parameters and matrix R is the 

three-by-three orthogonal rotation matrix. If the rows of the matrices 𝐴 and 𝑅 are represented by 𝐴𝑖 and 

𝑅𝑖 respectively, then: 

𝐴 = [

𝐴1
𝐴2
𝐴3

] , 𝐾 =  [
𝑎 𝑏 𝑐
0 𝑑 𝑒
0 0 𝑓

] , 𝑅 =  [

𝑅1
𝑅2
𝑅3

], 

𝐴 = 𝐾[𝑅] ⟺ 

⟺ [

𝐴1
𝐴2
𝐴3

] = [
𝑎 𝑏 𝑐
0 𝑑 𝑒
0 0 𝑓

] [

𝑅1
𝑅2
𝑅3

] = [

𝑎𝑅1 + 𝑏𝑅2 + 𝑐𝑅3
𝑑𝑅2 + 𝑒𝑅3
𝑓𝑅3

] 
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Solving for 𝑅𝑖 , 𝑓𝑜𝑟 𝑖 = 1,2,3 we get intrinsic matrix K. 

𝐾 = 

[
 
 
 
𝑎
𝑓⁄
𝑏
𝑓⁄

𝑐
𝑓⁄

0 𝑑
𝑓⁄
𝑒
𝑓⁄

0 0 1 ]
 
 
 
 

 Zhang’s Calibration method 

Commonly used today, camera calibrations are based on a technique developed by Zhengyou 

Zhang. Zhang proposed a new flexible calibration method by using known constraints and assumptions. 

[27][28] 

Considering still the pinhole model, 2D points are written as �̃� = [𝑢 𝑣 1]𝑇 and 3D points are 

written as �̃� = [𝑋 𝑌 𝑍 1]𝑇, resulting in the model equation 𝑠�̃� = 𝐴[𝑅 𝑡]�̃�. In this equation, s is the 

arbitrary scale factor, [𝑅 𝑡] is the extrinsic matrix composed of rotation matrix and translation vector, 

and A is the intrinsic matrix containing the all the parameters to be determined. 

𝐴 = [

𝛼 𝛾 𝑢0
0 𝛽 𝑣0
0 0 1

] 

In this notation, (𝑢0 𝑣0) are the principal point’s coordinates, (𝛼 𝛽) are the scale factors in the 

𝑢 and 𝑣 axes respectively and the 𝛾 parameter is the image’s skew. 

This method starts by considering the restraints of the intrinsic parameters determined from a 

single chessboard pattern plane. Assuming the model plane is on 𝑍 = 0 from the world coordinate 

system, we can rewrite the model in a simpler form, like such: 

𝑠 [
𝑢
𝑣
1
] = 𝐴[𝑟1 𝑟2 𝑟3 𝑡] [

𝑋
𝑌
0
1

] ⟹ 𝑠 [
𝑢
𝑣
1
] = 𝐴[𝑟1 𝑟2 𝑡] [

𝑋
𝑌
1
]  2.5 

For each image of the chessboard, with 𝐻 =  𝐴[𝑟1 𝑟2 𝑡], the equation 𝑠�̃� = 𝐻�̃� relates the 

chessboard point’s world coordinate, �̃�, to their respective image coordinates, �̃�. Using these points 

detected from the chessboard, the homography matrix, H, is estimated applying singular value 

decomposition and then the results are optimized through the Levenberg-Marquart method [23]. 

Knowing the values of the matrix H the intrinsic parameters must be extracted. This extraction is 

done is the following steps:  

• Exploit the constraints regarding, k, r1 and r2; 

• Define a matrix 𝐵 = 𝐴−𝑇𝐴−1 generating a new homogeneous linear system; 

• Solve the new homogeneous linear system for B; 

• Decompose matrix B with the Cholesky decomposition. 

By expressing 𝐻 = [ℎ1 ℎ2 ℎ3] we get the equation [ℎ1 ℎ2 ℎ3] =  𝜆𝐴[𝑟1 𝑟2 𝑡]. Using the 

known constraints of the 𝑟1 and 𝑟2 orthonormality we get two basic constraints: 
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{
ℎ1
𝑇𝐴−𝑇𝐴−1ℎ2 = 0

ℎ1
𝑇𝐴−𝑇𝐴−1ℎ1 = ℎ2

𝑇𝐴−𝑇𝐴−1ℎ2
  2.6 

Defining 𝐵 = 𝐴−𝑇𝐴−1, where B can be defined by vector 𝑏 = [𝐵11 𝐵12 𝐵22 𝐵13 𝐵23 𝐵33]
𝑇 

we can arrive at the following equations, 

{
ℎ1
𝑇𝐵ℎ2 = 0

ℎ1
𝑇𝐵ℎ1 − ℎ2

𝑇𝐵ℎ2 = 0
⟹ {

𝑣12
𝑇 𝑏 = 0

𝑣11
𝑇 𝑏 − 𝑣22

𝑇 𝑏 = 0
  2.7 

Where 𝑣𝑖𝑗 = [ℎ𝑖1ℎ𝑗1 ℎ𝑖1ℎ𝑗2 + ℎ𝑖2ℎ𝑗1 ℎ𝑖2ℎ𝑗2 ℎ𝑖3ℎ𝑗1 + ℎ𝑖1ℎ𝑗3 ℎ𝑖3ℎ𝑗2 + ℎ𝑖2ℎ𝑗3 ℎ𝑖3ℎ𝑗3]𝑇, 

establishing a matrix 𝑉 = [
𝑣12
𝑇

(𝑣11 − 𝑣22)
𝑇] for each chessboard image. Using at least three chessboard 

images we can stack the matrix V and solve 𝑉𝑏 = 0, through singular value decomposition, to obtain b 

and hence B. Finally, matrix A is calculated by applying the Cholesky decomposition [23] to the matrix 

B, obtaining the intrinsic parameters. 

2.3.2 Extrinsic Calibration 

The extrinsic parameters are the external specifications of the image sensor at the time of the 

acquisitions. These parameters are the position and orientation of the camera’s reference frame relative 

to the world frame. The position is noted in the form of a three-by-one vector containing the cartesian 

coordinates of the frames origin in relation to the world frame, Figure 9, and the orientation is noted by 

a three-by-three matrix describing the rotation of the image sensor frame in relation to the world frame, 

Figure 8. 

 

Figure 8: Rotation Parameters [29] 
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Figure 9:Translation Parameters [30] 

Determining these extrinsic parameters is accomplished by solving the Perspective-n-Point 

problem, commonly referred to as PnP problem. Usually, algorithms used to solve PnP problem require 

already known intrinsic parameters, therefore a camera calibration is usually executed beforehand. 

Basically, this problem consists of using a set of known 3D points and their corresponding 2D points in 

the image, as seen in Figure 10, to estimate the extrinsic parameters of a calibrated camera. 

 

Figure 10: Perspective-n-Points problem [31] 

The pose of a camera has overall six degrees-of-freedom. Three degrees-of-freedom come from 

the camera orientation which consists of roll, pitch and yall rotations and the last three degrees-of-

freedom come from the cameras position consisting of translations in each of the 3D world frame’s axis. 

Each point correspondence resolves two degrees-of-freedom, therefore, to reach a solution to the PnP 

problem, at least three pairs of corresponding points are needed. It should be noted that a PnP problem 

doesn’t return a singular solution, but rather a set of possible solutions, requiring a post-processing step 

to determine the best solution from the set. Some algorithms are built to estimate a solution using only 

four pairs, 𝑛 = 4, three pairs to arrive at a set of four possible solutions and the fourth pair to help 

determine the best solution, this variant is usually noted as P3P algorithms. However, most algorithms 

𝑡 =  [

𝑡𝑥
𝑡𝑦
𝑡𝑧

] 
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are built to support more than three pairs, 𝑛 ≥ 3, the extra pairs are used to optimize the solution by 

reducing the impact of noise in the data, these are referred by the common PnP notation [32]. 

To keep within the scope of this thesis, we restricted our search to established and open sourced 

algorithms, instead of programming algorithms from root. The open source library OpenCV has available 

various implementations of algorithms for the solution of the PnP problem. We will test and compare 

this established functions to decide the most efficient method to estimate the extrinsic parameters. 

The available OpenCV algorithms [33] are based on the following papers: 

• P3P algorithm-Complete Solution Classification for the Perspective-Three-Point Problem 

[34][32]. 

• AP3P algorithms-An Efficient Algebraic Solution to the Perspective-Three-Point Problem [35]. 

• EPnP algorithm-An Accurate O(n) Solution to the PnP Problem [36][32]. 

The default method used by OpenCV is an iterative algorithm. This algorithm uses 𝑛 ≥ 4 points, 

performs an initial estimation for the pose, through a direct linear transform [23], and iterates this 

estimation using a Levenberg-Marquardt optimization to minimize the reprojection error. 

 P3P algorithm 

The P3P algorithm accesses the problem with an algebraic approach, applying Wu-Ritt’s zero 

decomposition algorithm [37][38]. Figure 11 shows the P3P problem, where P is the center of 

perspective and A, B and C are the control points.  

 

Figure 11: Representation of the P3P problem [34] 

With |𝑃𝐴| = 𝑋, |𝑃𝐵| = 𝑌, |𝑃𝐶| = 𝑍, 𝛼 = ∠𝐵𝑃𝐶, 𝛽 = ∠𝐴𝑃𝐶, 𝛾 = ∠𝐴𝑃𝐵, 𝑝 = 2 cos𝛼 , 𝑞 = 2cos 𝛽 ,

𝑟 = 2 cos 𝛾 , |𝐴𝐵| = 𝑐′, |𝐵𝐶| = 𝑎′, |𝐴𝐶| = 𝑏′ we can write the P3P equation system from the triangles 

PBC, PAC and PAB: 

{
𝑌2 + 𝑍2 − 𝑌𝑍𝑝 − 𝑎′2 = 0

𝑍2 + 𝑋2 − 𝑋𝑍𝑞 − 𝑏′2 = 0

𝑋2 + 𝑌2 − 𝑋𝑌𝑟 − 𝑐′2 = 0

  2.8 

The following conditions are assumed so that the solutions for the control points are physical: 
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{
 
 

 
 
𝑋 > 0,   𝑌 > 0,   𝑍 > 0,   𝑎′ > 0,   𝑏′ > 0,   𝑐′ > 0
𝑎′ + 𝑏′ > 𝑐′,   𝑎′ + 𝑐′ > 𝑏′,   𝑏′ + 𝑐′ > 𝑎′
0 < 𝛼, 𝛽, 𝛾 < 𝜋, 0 < 𝛼 + 𝛽 + 𝛾 < 2𝜋 
𝛼 + 𝛽 > 𝛾, 𝛼 + 𝛾 > 𝛽, 𝛾 + 𝛽 > 𝛼

𝐼0 = 𝑝
2 + 𝑞2 + 𝑟2 − 𝑝𝑞𝑟 − 1 ≠ 0

 

 The equation system is simplified by setting 𝑋 = 𝑥𝑍, 𝑌 = 𝑦𝑍, |𝐴𝐵| = √𝑣𝑍, |𝐵𝐶| = √𝑎𝑣𝑍, |𝐴𝐶| =

√𝑏𝑣𝑍. With 𝑍 = |𝑃𝐶| ≠ 0 the system of equations becomes: 

{

𝑦2 + 1 − 𝑦𝑝 − 𝑎𝑣 = 0

𝑥2 + 1 − 𝑥𝑞 − 𝑏𝑣 = 0

𝑥2 + 𝑦2 − 𝑥𝑦𝑟 − 𝑣 = 0

 

The system is reduced to two equations by eliminating 𝑣 resulting in: 

{
𝑝1 = (1 − 𝑎)𝑦

2 − 𝑎𝑥2 − 𝑝𝑦 + 𝑎𝑟𝑥𝑦 + 1 = 0

𝑝2 = (1 − 𝑏)𝑥
2 − 𝑏𝑦2 − 𝑞𝑥 + 𝑏𝑟𝑥𝑦 + 1 = 0

  2.9 

To solve this P3P system of equations, the positive solutions of the two quadratic equations must 

be determined. This mean the P3P problem can have infinite solutions or four solutions at most. The 

Wu-Ritt’s zero decomposition method can be used to represent the zero set of a polynomial equation 

system as the union of zero sets of equations in triangular form, like such: 

𝑓1(𝑢. 𝑥1) = 0, 𝑓2(𝑢. 𝑥1, 𝑥2) = 0,… , 𝑓𝑝(𝑢. 𝑥1, … , 𝑥𝑝 ) = 0, 

With 𝑢 being a set of known parameters and 𝑥 being the unknown variables. Solutions for an 

equation system in triangular form are well-determined, easily reduceable to the solution of univariate 

equations. Considering 𝑃𝑆 as a polynomial set and 𝐼 as a polynomial, let Zero(𝑃𝑆) be the set of solutions 

of the equation system 𝑃𝑆 = 0, and 𝑍𝑒𝑟𝑜 (
𝑃𝑆

𝐼
) = 𝑍𝑒𝑟𝑜(𝑃𝑆) − 𝑍𝑒𝑟𝑜(𝐼). The earlier assumption, 𝐼0 ≠ 0, 

can help simplify the computation, considering 𝑍𝑒𝑟𝑜(
𝐸𝑆

𝐼0
) we decompose it with Wu-Ritt’s method into 10 

disjoint components, as such: 

𝑍𝑒𝑟𝑜 (
𝐸𝑆

𝐼0
) =⋃𝐶𝑖 .

10

𝑖=1

  2.10 

Where 𝐶𝑖 = 𝑍𝑒𝑟𝑜 (
𝑇𝑆𝑖

𝑇𝑖
) , 𝑖 = 1,…9 and 𝐶10 = 𝑍𝑒𝑟𝑜 (

𝑇𝑆10

𝑇10
) ∪ 𝑍𝑒𝑟𝑜 (

𝑇𝑆11

𝑇11
), where 𝑇𝑖 are polynomials 

and 𝑇𝑆𝑖 are polynomials equations in triangular form. The decomposition allows us to make the following 

observation: 

• Given that the solutions for each triangular set are well-determined, this decomposition provides 

the complete set of analytical solutions for the P3P problem. 

• Within the assumptions made earlier, there are at most four different solutions, as seen in Table 

1. 

• This decomposition proves to be a complete and robust method to determine the solutions for 

the P3P problem. 
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Table 1: Maximal number of solutions for each component 

 

 AP3P algorithm 

Using the positions, 𝑝𝑖 
𝐺 , of three known features, 𝑓𝑖 , 𝑓𝑜𝑟 𝑖 = 1,2,3, expressed in frame G, and the 

corresponding bearing measurements, 𝑏𝑖 
𝐶 , the AP3P algorithms estimates the position, 𝑝𝐶 

𝐺 , and 

orientation, 𝐶𝐶
𝐺 , of camera, C.  

 

Figure 12: AP3P notation [35] 

From Figure 12, we see the geometry of the problem to be solved for each point used in 

calibration. 

𝑝𝑖 
𝐺 = 𝑝𝐶 

𝐺 + 𝑑𝑖 𝐶𝐶
𝐺 𝑏𝑖 

𝐶 , 𝑓𝑜𝑟 𝑖 = 1, 2, 3  2.11 

Where 𝑑𝑖 = ‖ 𝑝𝐶 
𝐺 − 𝑝𝑖 

𝐺 ‖ being the distance from the camera position to the feature, 𝑓𝑖, position. 

The algorithm first solved the problem for the orientations and then solves for position using the 

estimated orientation. To solve for orientation the position is eliminated from the previous equation, 

resulting in a system of three equations: 

{

( 𝑝1 
𝐺 − 𝑝2 

𝐺 )𝑇 𝐶𝐶
𝐺 ( 𝑏1 

𝐶 × 𝑏2 
𝐶 ) = 0

( 𝑝1 
𝐺 − 𝑝3 

𝐺 )𝑇 𝐶𝐶
𝐺 ( 𝑏1 

𝐶 × 𝑏4 
𝐶 ) = 0

( 𝑝2 
𝐺 − 𝑝3 

𝐺 )𝑇 𝐶𝐶
𝐺 ( 𝑏2 

𝐶 × 𝑏3 
𝐶 ) = 0

  

2.12 

2.13 

2.14 

Each of the equations in this system is factorized with, 𝐶𝐶
𝐺 = 𝐶(𝑘1, 𝜃1)𝐶(𝑘2, 𝜃2)𝐶(𝑘3, 𝜃3), where: 

𝑘1 ≜
𝑝1 
𝐺 − 𝑝2 

𝐺

‖ 𝑝1 
𝐺 − 𝑝2 

𝐺 ‖
, 𝑘2 ≜

𝑏1 
𝐶 × 𝑏2 

𝐶

‖ 𝑏1 
𝐶 × 𝑏2 

𝐶 ‖
, 𝑘1 ≜

𝑘1 × 𝑘3
‖𝑘1 × 𝑘3‖

 

From the factorization of 2.12 results 𝜃2, while the factorizations of 2.13 and 2.14 lead to 

𝑢𝑖
𝑇𝐶(𝑘1, 𝜃1)𝐶(𝑘2, 𝜃2)𝐶(𝑘3, 𝜃3)𝑣𝑖 = 0 

Where 𝑢𝑖 ≜ 𝑝1 
𝐺 − 𝑝3 

𝐺 , 𝑣𝑖 ≜ 𝑏1 
𝐶 × 𝑏3 

𝐶 , 𝑓𝑜𝑟 𝑖 = 1, 2. The results of these factorizations are 

simplified further through several substitutions, with the goal of eliminating 𝜃3 and arriving at a quadratic 

polynomial involving a trigonometric function of 𝜃1. Solving in closed form for the roots of this quadratic 

polynomial, we get for each root two solutions for the rotation matrix, 𝐶𝐶
𝐺 . 
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The rotation matrix is then recovered through the following method. Considering we have  

𝐶𝐶
𝐺 = 𝐶(𝑘1, 𝜃′1)𝐶(𝑘′′3, 𝜃3)𝐶(𝑘1, 𝜙)𝐶(𝑘2, 𝜃2)  2.15 

where 𝑘′3 ≜ 𝐶(𝑘2, 𝜃2 )𝑘3 = 𝑘2 × 𝑘1, 𝜃′1 ≜ 𝜃1 − 𝜙 and  𝑘′′3 ≜ 𝐶(𝑘1, 𝜙)𝑘′3. Since 𝑘1 and 𝑘1 are 

perpendicular to one another a rotation matrix can be constructed such that 

𝐶̅ = [𝑘1 𝑘′′3 𝑘1 × 𝑘′′3] 

Therefore, 𝑘1 = 𝐶̅𝑒1, 𝑘′′3 = 𝐶̅𝑒2 where [𝑒1 𝑒2 𝑒3] ≜ 𝐼3. Substituting 𝑘1 and 𝑘′′3 in 2.15, we get  

𝐶𝐶
𝐺 = 𝐶̅𝐶(𝑒1, 𝜃′1)𝐶(𝑒2, 𝜃3)𝐶̿ 

Where 

𝐶̿ ≜ 𝐶(𝑒2, 𝜃3 − 𝜃′3)𝐶̅
𝑇𝐶(𝑘1, 𝜙)𝐶(𝑘2, 𝜃2) = 

= 𝐶(𝑒2, 𝜃3 − 𝜃
′
3)[𝑘

′
1 𝑘3 𝑘′1 × 𝑘3] = 

= [ 𝑏1 
𝐶 𝑘3 𝑏1 

𝐶 × 𝑘3] 

With the rotation matrix calculated we proceed to solving for the position. By substituting in 2.11 

the expression for 𝑑𝑖 yields 

𝑝𝐶 
𝐺 = 𝑝𝐶 

𝐺 −
𝛿 sin 𝜃′1

𝑘3
𝑇 𝑏3 
𝐶

𝐶𝐶
𝐺 𝑏3 

𝐶  

Where 

𝛿 ≜ √(𝑢1
𝑇𝑘′3)

2 + (𝑢1
𝑇𝑘2)

2 = ‖𝑢1 × 𝑘1‖ 

 EPnP algorithm 

As mentions before, the redundancy in having more points than necessary is used to reduce the 

impacts of noise, however using larger data sets also creates a new problem, processing this data 

becomes a much more complex procedure requiring heavier computation. For this reason, it becomes 

necessary to use a more efficient algorithm to solve PnP problems.  

The Efficient PnP (EPnP) technique’s approach is to express all 3D points as a weighted sum of 

four virtual control points, reducing the complexity to 𝑂(𝑛) while keeping a good accuracy of the 

estimation. With the provided coordinates for the 3D points and the corresponding 2D image projections, 

the first step is to retrieve their coordinates in the camera coordinate system. Given that the central idea 

is to express all the point’s coordinates as a weighted sum of four non-coplanar virtual control points, it 

means that the coordinates of the control points in the camera coordinate system become the unknown 

in the problem. The efficiency of this technique comes from the notion that for large 𝑛’s cases, it becomes 

a much smaller number of unknowns compared to the n depth values that conventional methods work 

with. Noting the reference points as, 𝑝𝑖  𝑓𝑜𝑟 𝑖 = 1,… , 𝑛 and the control points as, 𝑐𝑗  𝑓𝑜𝑟 𝑗 = 1,… ,4, we 
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can express the reference points as a weighted sum of the control points in the world and camera 

coordinate systems, with the following expressions: 

𝑝𝑖
𝑤 =∑𝛼𝑖𝑗𝑐𝑗

𝑤

4

𝑗=1

, 𝑤𝑖𝑡ℎ ∑𝛼𝑖𝑗

4

𝑗=1

= 1  

2.16 

𝑝𝑖
𝑐 =∑𝛼𝑖𝑗𝑐𝑗

𝑐

4

𝑗=1

  

 

Where the 𝛼𝑖𝑗 are homogeneous barycentric coordinates, uniquely defined and easy to estimate. 

The superscripts  𝑤 and  𝑐 indicate the frame in which the points coordinates are expressed, world or 

camera coordinate system respectively. While the control points can be randomized, taking the centroid 

of the reference points as one control point, and setting the rest in order to form a basis aligned with the 

principal directions of the data, results in a more stable method. This choice is similar to conditioning 

the linear system of equations, presented below, through the normalization of the points coordinates 

similarly to the one recommended for the classic DLT method. 

∀𝑖, 𝑤𝑖 [
𝑢𝑖
1
] = 𝐴𝑝𝑖

𝑐 = 𝐴∑𝛼𝑖𝑗𝑐𝑗
𝑐

4

𝑗=1

 

In this expression, 𝐴 is the camera intrinsic calibration matrix, 𝑢𝑖 are the 2D image projections of 

the reference points, 𝑝𝑖 for 𝑖 = 1,… , 𝑛 and 𝑤𝑖 are scalar projective parameters. This equation can be 

rewritten considering the 3D coordinates for each 𝑐𝑗
𝑐 control point, noted as [𝑋𝑗

𝑐 𝑌𝑗
𝑐 𝑍𝑗

𝑐]𝑇,  the 2D 

coordinates of the 𝑢𝑖 projections, noted as [𝑢𝑖 𝑣𝑖]𝑇, the 𝑓𝑢, 𝑓𝑣 focal length coefficients and the principal 

point coordinates, (𝑢𝑐, 𝑢𝑣), which are present in the matrix A: 

∀𝑖, 𝑤𝑖 [
𝑢𝑖
𝑣𝑖
1
] = [

𝑓𝑢 0 𝑢𝑐
0 𝑓𝑣 𝑢𝑐
0 0 1

]∑𝛼𝑖𝑗

4

𝑗=1

[

𝑥𝑗
𝑐

𝑦𝑗
𝑐

𝑧𝑗
𝑐

]  2.17 

 

 

The 12 control points coordinates (𝑥𝑗
𝑐 , 𝑦𝑗

𝑐 , 𝑧𝑗
𝑐) 𝑓𝑜𝑟 𝑗 = 1,… , 4 and the 𝑛 projective parameters 

𝑤𝑖  𝑓𝑜𝑟 𝑖 = 1,… , 𝑛 are the unknowns of this linear system. It can be deduced from the last row of the 

above system of equations that 𝑤𝑖 = ∑ 𝛼𝑖𝑗𝑧𝑗
𝑐4

𝑗=1 , applying this expression to the other two rows results 

in the following two linear equations for each reference point: 

∑ 𝛼𝑖𝑗𝑓𝑢𝑥𝑗
𝑐 + 𝛼𝑖𝑗(𝑢𝑐 − 𝑢𝑖)𝑧𝑗

𝑐 = 0
4

𝑗=1
  

2.18 

∑ 𝛼𝑖𝑗𝑓𝑣𝑦𝑗
𝑐 + 𝛼𝑖𝑗(𝑣𝑐 − 𝑣𝑖)𝑧𝑗

𝑐 = 0
4

𝑗=1
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Since there are no projective parameters 𝑤𝑖 in these equations, a linear system based on the 

concatenation of the two equations can be established for all 𝑛 reference points: 

𝑀𝑥 = 0 

In the equation above, M is a 2n-by-12 matrix consisting of the coefficients of the two linear 

equations above, for each reference point, while 𝑥 = [𝑐1
𝑐𝑇 𝑐2

𝑐𝑇 𝑐3
𝑐𝑇 𝑐4

𝑐𝑇]
𝑇
  is a vector made of the 12 

unknowns. The solution belongs in the null space, or kernel, of M. A final step is a Gauss-Newton 

optimization that can be performed to increase the accuracy of the solution with minimal computational 

cost. 
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Chapter 3 

 

3  Solutions Proposal 

3.1 Structure-from-Motion Method 

3.2 Considered scanner configurations 

3.3 Hardware configurations 

3.4 Intrinsic Calibration methods 

3.5 Crude extrinsic calibration 

3.6 Extrinsic Calibration - Perspective-n-Point 
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3 Solutions Proposal 

With the study conducted in the literary review we can assess the advantages and disadvantages 

of different scanner categories. Given that the stone blocks have dimensions in the range of two to four 

meters in length, width and height, designing a contact scanner with a work area large enough to fit the 

stone blocks would not only be economically and spatially costly but the scanning process would also 

be too time consuming to be applicable. Non-contact active scanners require a measure of control over 

the working environment. Therefore, a passive scanner capable of acquiring the data for a quality 3D 

reconstruction is the most viable solution answer to the first complementary question, Q1. 

Currently the workers determine the location of the cuts simply by visually inspecting the blocks 

for flaws. One of our objectives will be to optimize this part of the cutting process. Designing a system 

capable of scanning the stone blocks for the purpose of reconstructing a three-dimensional model 

granting the workers the ability to analyze the model using computer software. This allows the quarry to 

optimize the amount of stone slabbed saved by calculating the positions of the cuts with a higher 

accuracy. Another objective will be to optimize the advertising quarry methods. Designing another 

system capable of scanning a processed block for the acquisition a 3D model for advertisement 

purposes, this allows quarries to show their customers the full volume and surface quality of their stone 

blocks if a more comprehensive medium.  

3.1 Considered scanner configurations 

The method used for three-dimensional reconstruction uses as main inputs the images of the 

object, the intrinsic and extrinsic parameters are optional inputs. The only hardware required to obtain 

all these inputs are image sensor and a computer. The images for the purpose of the reconstruction 

must be well-illuminated and sufficiently high resolution for a good quality 3D model and reasonable low 

resolution to avoid lengthy reconstructions. The intrinsic and extrinsic parameters are computed through 

distinct calibration processes using images containing easily identifiable points of known coordinates. 

3.1.1 Linear scanning system configuration 

This configuration is based on the idea to use the known motion of the Fravizel’s cutting machine. 

The cutting machine consists of a portico which supports the cutting instrument, this portico is installed 

on top of rails allowing it to move over the stone blocks. Figure 13 shows a simple CAD drawing of the 

portico with the cameras field of views exemplified. The green structure is the portico and the black 

arrows indicate the motion allowed by the rails.  
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Figure 13: 3D CAD model of the linear scanner configuration 

The portico rails are encoded and can be used to accurately perform acquisitions at defined 

intervals of distance. This way we can define a world frame with one of its axis colinear to the portico’s 

rails, so that the motion provided to the camera would only alter one the extrinsic parameter 

corresponding to the axis that is colinear with the rails, maintaining all others constant. The full extrinsic 

parameters of each image can be easily determined with a single pose estimation to determine all the 

extrinsic parameters of the initial acquisition and the rails motion to calculate the only positional 

coordinate that changes between acquisitions. Figure 14 shows a 3d graph where the black dot 

represents the origin of the world frame, the blue markers are the known points used for initial pose 

estimation and the colored dots and lines represent the cameras position and orientation. 

 

Figure 14: 3D graph plot of the extrinsic calibration 
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3.1.2 Circular scanning system configuration 

Considering the advantages provided by a 3D reconstruction, this seems a medium through which 

the advertisement limitations could be overcome, answering the question, Q3. A 3D model of the 

finished limestone block would be possible to display on websites through a 3D displayer. This would 

allow possible buyers to rotate and zoom in and out of the block to obtain a more comprehensive 

appreciation of its dimensions and surface quality without having to sacrifice either. This configuration 

is based on this desire to obtain an accurate full gapless 360-degree view of the stone blocks that 

quarries intend to sell. The pictures are obtained with cameras positioned in a circle around the object, 

oriented towards the object, this ensures that all surfaces are captured and that there is significant 

overlap between consecutive cameras perspectives. The Figure 15 shows the positions and orientations 

of a set of images taken around an object to exemplify the desired notion of a circular configuration. 

 

Figure 15: 3D graph plot of an example for the circular scanner configuration 

3.2 Hardware configurations 

3.2.1 USB webcams and computer 

Two Trust Exis webcams were used as image acquisition devices for small scaled simulations of 

configurations corresponding to desired applications. To simulate a small scale version of the first 

configuration (linear movement), both cameras were supported by the same homemade tripod, as seen 

in Figure 16, placed at constant distance from each other and fixed orientations towards the same point 

between them, where the object is placed. The cameras were connected to one personal computer via 

USB ports and were accessed via MATLAB software installed with the MATLAB support package for 

USB webcams. A MATLAB script was created to control the triggering of the cameras. In this 

configuration, the acquisition of images needs to be synchronized between the cameras to ensure each 
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pair of images corresponds to the same position in the portico’s rail, in the real scale application. The 

triggering method needs to be highly responsive to ensure the image pairs are captured at consistently 

regular specified intervals. To test the viability of this configuration the MATLAB scripts accomplished 

two functions triggering the cameras and timing the triggers. The results of this test allows to conclude 

that while MATLAB can be used to control and trigger multiple cameras, using one computer to send 

the triggering signal to multiple cameras results in significant delays making it impossible to synchronize 

the acquisition of images between multiple cameras, as seen in Table 2. Concluding that synchronicity 

is not viable, rules out the linear scanning configuration, for this specific hardware. 

 

Figure 16: Webcam on makeshift stand and base with rotation palate 

Table 2: Timestamps of the camera's triggers 

Cam 1 (seconds) 0.2420 1.2022 2.1621 3.2346 4.1943 5.1545 6.2425 7.20235 

Cam 2 (seconds) 1.0622 2.0221 3.1104 4.0702 5.0304 6.1025 7.0625 8.0222 

To simulate the circular scanning configuration a camera must move in a circle of established 

radius centered on the object. Images are acquired at a constant specified angular interval for the 

positions to be known and a full 360º rotation is required to ensure reconstruction of all sides of the 

object. The maximum allowed angular difference between images supported by the different software 

used for reconstruction is 30 degrees, this implies a minimum of 12 photos are required to cover the full 

360 degrees, this can be seen in Figure 17. To achieve this simulation, the same Trust Exis webcam 

was used to acquire the images, and the circular motion was achieved by rotating the object itself while 

maintaining the camera in a known fixed position and unknown fixed orientation. Camera’s position is 

measured in relation to the objects position and while the camera’s orientation isn’t measured, the 

cameras center is pointed at the object’s rotation axis. The cameras position can be transformed into 

the required format later using a viable world coordinate system. The orientation can be calculated using 

identifiable points in the acquired image with known locations in the same world coordinate system. The 

object is rotated manually with the help of a platform, as seen in Figure 16, which comes equipped with 
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protractor to be used as a rotating plate where the object would be placed. To ensure this small-scale 

configuration works, the object was rotated by 30 degrees between each image acquisition. The 

cameras are triggered manually using a simple windows application and the images are saved as 

required before using them in the reconstruction software.  

 

Figure 17: Top view sketch for circular scanner configuration 

3.2.2 Computer and remote accessed camera phone 

The Trust Exis webcams, while a good option to test the viability of the image acquisition system, 

produced images with a very low resolution, resulting in a low-quality three-dimensional model. To 

improve the quality of the reconstructed model, images with higher resolutions are required. While 

researching for an image sensor of higher resolution, we discovered a simple app, IP Webcam [39], that 

can be installed in one of our personal mobile telephone allowing us to remotely access its camera for 

testing purposes, GUI seen in Figure 18. An adjustable phone clamp with suction cup is used to position 

and support the phone in a desired pose. The suction cup allows the adherence of the phone clamp to 

a variety of flat surfaces, allowing the positioning of the phone while the clamp’s adjustable joint, allows 

the phone orientation to be set as necessary. The phone’s camera was used to capture images and the 

rotation was simulated, using the same platform to rotate the object while acquiring images at known 

angular intervals. 

Object 

Camera 

30° 
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Figure 18: IPWebcam app GUI [39] 

3.2.1 Single-board computer and an 8MP camera 

After confirming the necessity and the viability of the images acquired by our phones in the 

previously described trial configuration, a cost-effective alternative to the use of our personal phones 

was sought out. This alternative should be able to allow us to create a small-scale version of the scanner 

we intent to develop, for further testing. The single-board computers developed by the Raspberry Pi 

foundation [40] have optional accessories and modules, such as an eight-megapixel camera module 

[41]. A single-board computer is, as it sounds, a fully functional computer built on a single small sized 

circuit board, without any expansion slots. Since they are computers, however basic, these Raspberry 

Pis are a very flexible and easy to use tool, they can be used as camera controllers, signal generators 

and more, allowing a good degree of flexibility for the purpose of testing solutions to our designs. For 

our purposes, these computers need only enough processing power to manage and trigger one camera, 

therefore single-board computers are an appropriate cost-effective choice.  
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Using a Raspberry Pi model 3 B+, shown in Figure 19 (a), as a controller for a V2 eight-megapixel 

camera module, shown in Figure 19 (b), establishes the optical sensor to be used in the following small-

scale versions of the circular scanner configuration designs. In these small-scale circular scanners, the 

scanned object is a common pavement limestone, shown in Figure 20, as they are a good small-scale 

approximation of the quarry’s limestone block, given that they were a small piece of what was once 

before a large limestone block. A single camera set up is used to test the cameras optical viability and 

the Raspberry Pi capabilities. A very simple tripod was used to support the camera module, shown in 

Figure 21 (a). The assembled camera mounted tripod allows adjusting the position and pose of the 

camera, Figure 21 (b). Using the OpenCV pose estimation method, the camera pose can be calculated 

from any position around the object, by providing an image of a chessboard pattern in a known position. 

To take advantage of this pose estimation method, contrary to previous setups, the object is maintained 

stationary while the camera is placed around the object. At each position the camera is placed, two 

images are captured, one with the object and another with the chessboard pattern for pose estimation. 

The chessboard patterns were attached to a rigid structure of known dimensions to ensure the known 

coordinates of the pattern’s points, shown in Figure 22. 

  

Figure 19: image sensor hardware  
(a) Raspberry Pi model 3B+ (Camera port highlighted) 

(b) V2 Pi Camera 
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Figure 20: Pavement Stone 

 

Figure 21: image sensor support 
(a) tripod (b) camera mounted tripod 

 

Figure 22: Chessboard Patterns box 
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3.2.2 Circular scanning configuration with Raspberry Pi 

After determining the viability of the single-board computer hardware, the circular scanning 

configuration is improved. In this configuration, the camera is maintained in a stationary location while 

the object is rotated between each frame acquisition by a known amount of degrees. For this approach, 

the extrinsic calibration is accomplished by estimating the pose of the camera with same OpenCV 

estimation method used before. Performing the extrinsic calibration on the static camera gives us the 

pose corresponding to the first image, the poses for the subsequent images are acquired by applying 

basic algebra to rotate the estimated camera pose in accordance with the rotation applied to the object. 

For instance, if we maintain a stationary camera and we rotate the object by twenty degrees in a 

clockwise direction between each acquisition, then we can algebraically rotate the initial pose by twenty 

degrees in a counterclockwise direction, simulating the corresponding inverse scenario. This 

corresponding scenario would be having the object in a stationary position while the camera moves in 

a circumference centered on the object, for this example this would mean, the camera is moved, in the 

circumference, by twenty degrees in a counterclockwise direction between each image acquisition. 

This method to obtain images, for the three-dimensional reconstruction, presents a problem; while 

the object is rotated, the background behind it will remain stationary. The features detection will collect 

features from the object and the background as well, which will cause conflicts. This problem is solved 

by applying a background removal process to the images prior to reconstruction, for example, capturing 

an image of the background and using this image to perform a logical Exclusive OR bitwise operation 

to all images used for reconstruction. This leaves us with a set of images of the object without 

background eliminating the detection of the features that would cause problems. 

To rotate the object by known intervals a simple device was three-dimensionally drawn and 

printed. This device is a simple box housing a rotating pad attached to a protractor, as seen in Figure 

23. 

 

Figure 23: Manually rotating support 
A-Base; B-Lid; C-Protractor; D-Platform 

This support is comprised of four parts drawn in SolidWorks and printed. The base, the lid, the 

protractor, and the rotating platform. The object rests on top of the rotating platform, and the protractor 

B 
D 

A 

C 
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is used to rotate and measure the amount of rotation. The base and protractor were printed 

simultaneously with the lid and platform respectively, Table 3 shows the printing durations. 

Table 3: Pieces 3D printing times 

Part Time 

Base + Lid 2h 30min 

Protractor + Platform 1h 16min 

Total 3h 46min 

3.2.3 Automated Circular scanning process 

The tripod, Figure 21 (b), while viable was not sturdy enough to be a consistently reliable support 

structure. A better method was required to control the position and orientation of the V2 Pi camera. 

However, a short flexible flat cable is the only connection between the board and the camera, therefore 

a case capable of housing both the Raspberry Pi board and the camera module is the best solution. To 

maintain costs down, a case was designed in SolidWorks, using the boards documents dimensions [42], 

and 3D printed in PLA instead of purchasing one. Upon some research we discover, common 3D printing 

errors with large and complex pieces include warping and curling respectively. Considering these 

common issues, the case was modeled two different ways. The first case was designed in six parts, one 

for each side of the case, as seen in Figure 24 (a), sacrificing structural integrity for an easier printing 

process. The case is assembled together with standoffs and nuts keeping the board and camera in 

place, as shown in Figure 24 (b). This design while also facilitating assembly, by allowing the sides of 

the case to be attached after the computer and camera board were screwed in place, it introduced 

issues with the accuracy of the pieces attaching mechanisms. The attaching mechanism between the 

parts might introduce deviations in the desired positions of the parts and by consequence the access to 

the board’s ports. The method designed to attach each part to one another consisted two mortise and 

tenon joints between each pair of parts, one part possessed two through mortises, cavities that passes 

entirely through the part, and the corresponding part possessed two tenon, projections of material on 

the end of the part, for insertion into the mortise. Usually mortise and tenon joints rely on glue or simple 

friction between the surfaces to hold the parts in place but in this case, the use of the standoff screws 

will not only keep the raspberry pi board in place but also close the case and maintain its structure. 
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Figure 24: Raspberry Pi case first model 
(a) Separate pieces (b) Assembled case 

The second designed case consisted of only two parts, the top lid, with the housing for the camera, 

and the box, with the housing for the computer board, as seen in Figure 25. 

 

Figure 25: Raspberry Pi case second model 
(a) Box (b) Lid 

Since the box, that houses the raspberry pi board, was not divided into separate parts the 

structure of the case was significantly better, and the absence of joints eliminated any errors caused by 

mismatching swelling in the tenons, as it is unavoidable in 3D printing. 

The common issues with warping and curling were occasionally present but minimal and 

restricted to the corners of the box, which presented no practical problem, and were aesthetically offset 

by the lack of joints, improving the overall quality of the case, both structurally and aesthetically. Another 

aspect that was considered when choosing the more appropriate design was the time it took to print. 

Table 4 shows the time it took for each design to be printed. The second designed proves faster to print 

by almost an hour, proving to be the preferable design. 

(a) (b) 

(a) (b) 
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Table 4: 3D printing times for each design 

1st Design 2nd Design 

Part Time Part Time 

Lid 1h40min Lid 1h20min 

Bottom face 1h40min 
Box 4h02min 

All lateral faces 2h46min 

Total 6h06min Total 5h22min 

Table 5: 3D printing times for pieces common to both designs 

Part Time 

Axis Joint 1 1h22min 

Axis Joint 2 1h44min 

Axis Joint 3 1h10min 

3 M2.5x25mm Standoffs 28min 

4 M2.5x11mm Standoffs 13min 

Slider 5min 

Total 5h02min 

To position and orient the case in a sturdy way, a kinematic chain, was designed with three 

degrees of freedom, two rotational joints with axis perpendicular to one another and a prismatic joint, 

seen in Figure 26. From the base to the tip of this kinematic chain: The first joint is prismatic allowing 

translations along the vertical axis, Figure 26 (A); the next joint is rotational, Figure 26 (B); the last joint 

is also rotational, Figure 26 (C). The first rotational joint allows rotation of the case around a vertical 

axis, turning the camera left and right (yaw rotation), Figure 27 (b), the second rotational joint allows 

rotation of the case around a horizontal axis, tilting the camera up and down (pitch rotation), Figure 27 

(a), and the prismatic joint allows translation of the case along a vertical axis. Three bones of the arm 

were designed in SolidWorks and 3D printed, the forth bone consists of a aluminum shaft with a squared 

cross-section, Figure 28.  
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Figure 26: Raspberry Pi support kinematic chain 

 

Figure 27: Rotational degrees of freedom motion 

The vertical movement, provided by the last axis, is accomplished through the squared shaped 

slot, which accommodates the aluminum shaft. A T-nut and bolt allows the tightening of the prismatic 

joint to the aluminum shaft to lock it at any height along its length. 

( (
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Figure 28: T-slot aluminum beam and T-nut CAD models 

While the prismatic joint gives control over the vertical coordinate, the other positional coordinates 

are control by choosing where to position the aluminum shaft. To maintain the beam in a vertical position 

a desk clamp with housing for the beam was designed in SolidWorks, Figure 29.  

 

Figure 29: Clamp pieces CAD models 

The designed clamp parts were then 3D printed, Figure 30 (a). The clamp parts were connected 

using an L-shaped screw and bolt, as shown in Figure 30 (b). 

 

Figure 30: Custom Clamp 
(a) 3D printed parts (b) Assembled clamp 
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Figure 31: Raspberry Pi case and support structure clamped on a desk 

In addition to controlling the image acquisition, the same computer can be programmed to control 

a servomotor, with the goal of rotating the object. Attaching a servomotor to a support plate creates a 

simple rotating bed for the object, allowing the automation of the entire circular scanning process. 

This hardware set up uses one image sensor, supported by the previously described structure, 

as shown in Figure 31, maintained in a static position and a servo to rotate the object. To obtain a full 

reconstruction without gaps, the set of images used must view the object from enough directions as to 

eliminate blind spots. Since a single camera is used in this set up, a servo capable of 360-degree rotation 

is required. 

There are most commonly two types of servomotors, positional servomotors and continuous 

servomotors. The positional servomotors receive a PWM control signal, which translates to the angular 

position of the output shaft within a 180-degree range. The continuous servomotors, the PWM control 

signal sets the speed and direction of the shaft’s rotation instead of its angular position, as it happens 

in traditional positional servos. In continuous servos the output shaft is capable of rotating the full 360-

degrees indefinitely, hence the name [43]. 

For our set up the Tower Pro MG995 continuous servomotor was used [44]. As most servos, 

MG995 comes with three wires, orange, red and brown. As shown in Figure 32, the servo has an orange 

wire for pulse width modulated (PWM) input, a red wire for voltage common collector (VCC) input and a 

brown wire for grounding. Using the raspberry pi to power the servo, is ill advised so an external power 

supply was used, a simple four AA battery support with a VCC and Ground wires can be used to power 

the servo, while the PWM input signal is generated by the Raspberry Pi. Considering that the servo must 

be grounded with the power supply and the signal generator, the components must be connected 

according to the electrical diagram shown in Figure 33. 
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Figure 32: Servo specifications 
Left: Tower Pro MG995 Servo; Right: Wire color-coding [44] 

 

Figure 33: Servo system’s electrical diagram 

The Figure 34 shows the functions of all the Raspberry Pi pins. The Raspberry Pi GPIO [45] pin 

six can be used for grounding and pin twelve can output a PWM signal to control the servo.  

Raspberry Pi 

Model 3 B+ 

PWM 

Ground 

MG995 

Servo 

Ground 

VCC 
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Figure 34: Raspberry Pi 3B+ Pinout specifications [45] 

3.2.4 Full-scale linear scanning configuration 

The real application of the 3D scanner on the quarry machine requires cameras with a broad field 

of view and a case to protect it from weather and harsh working conditions. The chosen hardware is a 

pair of Dalsa Genie Nano C4020 GigE cameras, shown in Figure 35, equipped with 1.1-inch format 12-

megapixel optical lenses.  

 

Figure 35: Camera Genie Nano C4020 [46] 

The Dalsa cameras use the Sony IMX304 imaging sensor model, which use CMOS technology. 

This hardware’s specifications are detailed in Table 6 and Figure 36.  

Table 6: Camera system specifications 

Camera type Color 

Dimensions (mm) 38.9 x 29.0 x 44.0 

Resolution (pixels) 12 Megapixel ⇒ 4112 horizontally x 3012 vertically 

Pixel size (μm) 3.45 x 3.45 

Field-of-View (degrees) 83.12° horizontally x 66.00° vertically x 106.14° diagonally 



42 
 

Sensor size (inches) 1.1 in 

Video Output GigE 

Trigger type External or programmable 

Lens Mount C and CS-mount 

Mass ~46g 

Operating Temperature -20˚ to +60˚ Celsius 

Power Supply 10 to 36V or PoE 

Data Connector Ethernet RJ-45 

Power and/or I/O Connector SAMTEC TFM-105 type 

Software Platform Teledyne DALSA Sapera LT8.0 for windows 

 

 

Figure 36: Camera ports  

The lens used is the 1.1-inch format high-resolution 12-megapixel lens manufactured by GOYO 

Optical. This lens general dimensions and technical specifications can be seen in Figure 37. 

  

 

Figure 37: Optical lens specifications [47] 

The camera is installed into a housing to protect it against environmental or other external 

elements. The camera housing used is the model CI-701 supported by the cable management bracket 

CI-800, Figure 38, and mounted by the pole mount bracket CI-815,  
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Figure 39-(a), supplied by MASSLOAD. 

 

Figure 38: Camera housing and support specifications [48] 
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Figure 39: Pole mount bracket specifications and camera housing inner installation [48] 

The camera system is attached to the Fravizel’s machine. As seen in Figure 40, this machine is 

composed of two main parts, a chainsaw mechanism that rotates a diamond chain, A, and a portico 

mechanism that supports and moves the chainsaw, B. The portico base attaches to a horizontal rail, 1, 

to allow it to move into position for the cut while the chainsaw mechanisms are attached to rails built on 

the vertical beams of the portico to move the chainsaw up and down, 2. The cameras are attached to 

beams on the portico structure to take advantage of its encoder and respective linear movement, as 

seen in Figure 41. This allows images of the stone blocks to be acquired with controlled linear motion 

provided with known position and orientation for each image. The machine possesses two porticos, a 

main portico that has a secondary shorter rail system rigidly attached to it and moves along the main 

rail system covering the entire working area, and a secondary portico that moves along the secondary 

rail system from the main portico. On each portico a pair of cameras can be installed, these camera 

pairs compose a stereo camera system to simultaneously acquire a pair of stereo calibrated images. 

(a) (b) 
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Figure 40: CAD model of Fravizel machine 

 

Figure 41: Scanning system installed on Fravizel cutting machine 

The data transfer is accomplished by connecting the cameras to a computer through a network 

using Ethernet cables. The camera is powered and triggered through the I/O input pins. The computer 

used has several Ethernet ports to allow the installation of more cameras if needed. The full 

specifications can be seen in Figure 42. 

2 

1 
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Figure 42: Computer Specifications [49] 

The cameras have I/O pins that allow power and extra functionalities to be accessed, Figure 43 

shows the pins specifications. 

 

Figure 43: Cameras I/O Connector Pins Details 

As proved by the earlier experiment with the Trust Exis webcams, using one computer to send 

multiple signals to trigger multiple cameras has proved too asynchronous. A simple solution is having 

one computer generating one signal to be sent, in parallel, to trigger multiple cameras. With the use of 

a Raspberry Pi, a custom signal can be scripted and transmitted, using one of the GPIO pins, to simulate 

and test this solution. 

This solution was tested in the lab by generating a signal with a Raspberry Pi and transmitting it, 

in parallel, to the cameras. The cameras external pins 3 and 5, which function as input common ground 
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and external input line 1 as shown in Figure 43, were connected to the RPI GPIO pins for grounding 

and signal transmission respectively. The results, described in detail in section 4.1.2,  show that 

synchronicity is achievable through external triggering. Therefore, to synchronize the pairs of cameras 

and match the acquisitions to the porticos position the camera’s pins 3 and 5 were connected to the 

portico rail encoder’s ground and signal generator.  

To provide power to the cameras, pins 1 and 2 were connected to an independent power supply 

ground and voltage common collector’s pins, respectively, through standard copper wires. Figure 44 

represents a simple diagram for the scanner system, the cameras Ethernet connections to the main 

computer are shown in blue, black and red lines represent the ground and voltage connections to the 

power supply and lastly the brown and green line represent the ground and signal transmitting wires 

connected to the trigger. 

 

Figure 44: Scanning system electrical diagram 

The field of view provided by this system can be viewed more practically in a CAD 3D model 

drawn in SolidWorks, as shown in Figure 45. 
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Figure 45: Camera system Field-of-View installed on Fravizel machine 

3.3 Intrinsic Calibration methods 

The cameras were calibrated using established tools or programmed functions. The MATLAB 

software comes installed with an app named Camera Calibrator for easy calibrations, later a Python 

script using pre-built OpenCV functions was used to calibrate the cameras, applying the algorithms 

explain in section 2.3.1. 

3.3.1 MATLAB Scripting 

For 3D reconstruction an optional input are the cameras intrinsic parameters, calculated through 

calibration. MATLAB software comes with the calibrating application, Camera Calibrator, an easy to use 

application with a simple GUI [50], Figure 47. The Camera Calibrator receives two inputs: a set of images 

of a chessboard pattern, Figure 46, taken from the camera to be calibrated; and the size of the patterns 

squares in metric units [51]. 

 

Figure 46: Chessboard pattern for MATLAB calibrations [50] 
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Figure 47: MATLAB Camera Calibration GUI [50] 

3.3.2 Python Scripting 

Python can be used to calibrate cameras with the use of OpenCV, allowing a larger variety of 

chessboard patterns to be detected for calibration. A script was written to accomplish calibration through 

following steps: Input the size pattern squares, generate the array of the points 3D coordinates, 

analyzing each image to try to detect the pattern, use the points detected across all images to calculate 

intrinsic parameters. 

 

Figure 48: Chessboard pattern for OpenCV 

In order to calibrate through images, multiple points must be identified in the image and said 

points must have, known three-dimensional world coordinates. These points are the inner corners of the 

chessboard pattern, as shown in Figure 48.  
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Figure 49: Corners order 

The point’s three-dimensional world positions must be stored in an array, designated 

objectPoints, in the same order and configuration as the array containing point’s two-dimensional image 

coordinates, the order of the corners is shown in Figure 49. The three-dimensional positions of these 

points are generated using the measured size of the squares and assuming the board is located along 

an XY plane. As an example, assuming a pattern with square size of 12 millimeters, the array generated 

would look like displayed in Table 7. 

Table 7: Corners array configuration 

Point X Y Z 

0 0 0 0 

1 12 0 0 

2 24 0 0 

… … … … 

9 0 12 0 

10 12 12 0 

11 24 12 0 

… … … … 

18 0 24 0 

19 12 24 0 

20 24 24 0 

The set of images taken of the chessboard pattern are analyzed with the use of the function, 

cv2.findChessboardCorners, this function has two outputs: A Boolean value, indicating whether or not 

the pattern was detected and an array, designated Corners, with the point’s image coordinates if the 

pattern is detected. For preview purposes, the function, cv2.drawChessboardCorners, takes as input 



51 
 

the image and the array Corners, and draws on the image the corners, color coding them in the order 

in which they were organized, from red to blue as seen in Figure 50. 

 

Figure 50: Detected Pattern 

After all the images are analyzed and enough patterns are detected, a minimum of 20 patterns 

are recommended for a good result, all the Corners arrays are given to the function 

cv2.calibrateCamera. This function uses the points 2D image coordinates, stored in Corners array, and 

the corresponding 3D world coordinates, stored in objectPoints array to determine the intrinsic 

parameters. The algorithms used by this function follow the technique for camera calibration by 

Zhengyou Zhang. [27] 

This method give us the following intrinsic parameters: a matrix containing, the focal lengths in 

pixel units, 𝑓𝑥 and  𝑓𝑦 and the principal point, (𝐶𝑥; 𝐶𝑦); and a vector containing radial distortion 

coefficients, 𝐾1 through 𝐾6, and tangential distortion coefficients, 𝑃1 and 𝑃2. Finally, all the intrinsic 

parameters are stored in an archive with “npz” format, for example “Calibration_Output.npz”. 

3.4 Extrinsic Calibration Methods 

3.4.1 Crude extrinsic calibration 

In order to obtain some rough estimates for the orientation of the camera, trigonometric 

calculations were computed with the pixel positions of three points with known real-world positions. In 

order to detect points in an image, the Aruco Python module was used. Aruco Python module contains 

the functions required for accurately detection of a set of custom markers, using these functions different 

markers can be used to locate specific points in an image containing multiple markers. Figure 52 shows 

an example of an image of the Aruco markers used to perform the calculations. The camera orientation 

can be represented using many different sets of angles, in this case the Tait-Bryan angles were 

calculated for a rough estimate. 
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The images of the Aruco markers used for this estimation, were acquired under certain 

constraints. As shown in Figure 51, the markers common plane was placed perpendicular to known 

distance, L, at a 45-degree angle in the considered world frame. The Aruco marker’s dimensions, 

distance between them and height are known. The camera is placed over the XY plane origin in the 

world frame at a known height. 

 

Figure 51: Aruco markers positioning - Top view 

 

Figure 52: Aruco markers 

To calculate the roll of the camera the simplest solution was to compute the angular difference 

between a horizontal line in the real word and a horizontal line in the respective image, as shown in 

Figure 53. Using the two most separate markers to describe the world horizontal line the difference 

between these points coordinates can lead to the equation: 

𝑅𝑜𝑙𝑙 =  tan−1
(𝑀𝑎𝑟𝑘𝑒𝑟3𝑦 −𝑀𝑎𝑟𝑘𝑒𝑟1𝑦)

(𝑀𝑎𝑟𝑘𝑒𝑟3𝑥 −𝑀𝑎𝑟𝑘𝑒𝑟1𝑥)
= tan−1(

∆𝑦

∆𝑥
)  3.1 
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Figure 53: Aruco markers roll 

For the purpose of calculating the camera’s yaw rotation, the middle marker, 2, is placed at 45º 

from the X-axis and at a known distance, L, from the camera, while all markers are positioned 

perpendicularly to the line between the origin and marker 2, as shown in Figure 55. In this arrangement 

the equation used to estimate an approximate value of the angle yaw is as follows: 

𝑌𝑎𝑤 =  45 − tan−1 (
𝐼𝑚𝑎𝑔𝑒 𝐶𝑒𝑛𝑡𝑒𝑟𝑥 −𝑀𝑎𝑟𝑘𝑒𝑟2𝑥

𝐿
) = 45 − tan−1 (

∆𝑥

𝐿
)  3.2 

 

The distance, L, is measured according to Figure 55. While the horizontal coordinates of the 

image center and the second marker and taken from the image as shown in Figure 54, to determine ∆𝑥. 

 

Figure 54: Aruco markers yaw 



54 
 

 

Figure 55: Top view coordinate system for yaw 

To calculate the pitch of the camera we need first to calculate the difference, along the vertical 

axis, between the camera position and the image center in metric units, represented in Figure 57, as 

Δh. Knowing the camera height, H, and marker height, mH, the height difference Δh is calculated as 

∆ℎ =  𝐻 − (𝑚𝐻 + ∆𝑦). The value Δy is the difference, along the vertical axis, between the image center 

and the marker 2 center in metric units, Figure 56. Upon calculating the height difference, the equation 

to calculate pitch becomes: 

𝑃𝑖𝑡𝑐ℎ =  tan−1(
∆ℎ

𝐿
)  3.3 
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Figure 56: Aruco markers for pitch 

 

Figure 57: Side view diagram for pitch 

The pose for the first image coincides with the cameras real fixed pose, therefore the initial pose 

is estimated using the Aruco markers and aforementioned equations. To calculate the supposed position 

and orientation of the camera of each subsequent image, the initial estimated pose is translated and 

rotated algebraically. 

With all angles estimated and the known position in the established world coordinate system, 

these extrinsic parameters can be organized in the necessary format required by the software to perform 

the reconstruction. 
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3.4.1 Extrinsic Calibration - Perspective-n-Point 

The previous extrinsic calibration method was only a simple quick calculation to obtain some 

rough numbers to attempt reconstructions with the images obtained with the earlier hardware. 

Estimating the poses of the cameras for each image acquisition can be accomplished more accurately 

by solving the Perspective-n-Point problem, described in section 2.3.2.  

Python Scripting 

Similar to the intrinsic calibration method, the image must contain identifiable points with known 

three-dimensional coordinates, so the chessboard pattern used for the intrinsic calibration is should also 

be applicable for several of the algorithms used in pose estimation. 

The script written to perform pose estimation follows similar steps to the intrinsic calibration, we 

initialize all known prior information, analyze each image to attempt to detect the pattern’s points and 

use each image’s collection of points to estimate the pose of the camera that captured each respective 

image. 

The prior information required is the intrinsic parameters calculated and the three-dimensional 

coordinates of the point’s positions. The intrinsic parameters are simply loaded from the archive created 

by the calibration script, containing all the parameters. 

The array containing the three-dimensional coordinates of the pattern’s corners, designated 

objectPoints, is generated the same way as before but in this case the pattern is not assumed to be a 

in a random XY plane independent from the patterns from other images. The function that calculates 

the camera poses will return a pose relative to the positions of the points used, in other words the camera 

pose will be defined in the same three-dimensional coordinate system used to define the point’s 

coordinates. For this reason, all the point’s positions from all patterns, must be described using the same 

coordinate system.  

For the case where the images are acquired through a circular motion of the camera, a box was 

used with a chessboard patterns glued to each lateral surface, as shown in Figure 58. In some poses 

the image sensor’s field-of-views encases two surfaces/patterns, this would cause confusion to the point 

detection function, which would randomly detect one of the two visible patterns.  
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Figure 58: Box with chessboard patterns 

To avoid this multiple pattern detection problem, different size patterns were used between 

consecutive surfaces; the larger faces had nine-by-six chessboard patterns, while the smaller faces had 

seven-by-six chessboard patterns. This difference in size allows us to specify the pattern we prefer to 

be detected on each case. The box dimensions and patterns square size are manually measured to 

generate each of the 3D-coordinates arrays, objectPoints, using the same coordinate system. Figure 59 

shows a graph with the points of the four patterns, using the three-dimensional coordinates from the 

generated objectPoints arrays.  

 

Figure 59: 3D-graph for chessboard corners 

For the case where the images are acquired with a static camera and the circular motion obtained 

through the rotation of the object, the pose of the camera was calculated differently. A single image of 
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the chessboard pattern is required for the set of images acquired through this method. The first pose is 

estimated through the same extrinsic calibration method and the following poses are calculated 

algebraically based on the angular motion applied to the object between image acquisitions. 

Similarly, to the intrinsic calibration script, each image is analyzed with the function, 

cv2.findChessboardCorners, if a pattern is detected an array, Corners, is outputted. The Corners array 

contains the 2D-image coordinates of the points detected from the chessboard pattern. An optional 

function, cv2.cornerSubPix, can be used to refine the corner’s locations in the Corners array. Finally, 

the function, cv2.solvePnP or cv2.solvePnPRansac, uses the 3D-coordinates array, objectPoints, the 

2D-coordinates array, Corners, and the intrinsic parameters to estimate the pose for the camera that 

captured that respective image. 

RANSAC, which stands for Random Sample Consensus, is a method that can be used to 

determine from a sample of data possible outliers that might induce wrong results. Using this method in 

our calibrations means detecting outliers from the set of points used for 3D to 2D correspondence and 

removing them from the set of points provided to the calibration algorithms. 

 Figure 60 shows an image, taken with the Pi Camera, shown in Figure 31, and a graph of the 

pose returned by the default iterative algorithm employed, by OpenCV, for PnP solution without the 

optimization of RANSAC, function cv2.solvePnP. 

 

Figure 60: 3D-graph for chessboard and proper camera pose 
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The black dot is the world frame’s origin, the red point is the camera position and the blue, red 

and green lines represent the camera orientation’s X, Y and Z-axis, respectively. In this graph the 

chessboard corners were color-coded from red to purple to easily display the order in which the corners 

are stored. As mentioned before, the points coordinates must be ordered the same way to ensure proper 

correspondence between image coordinates and world coordinates. As it can be seen from the graph, 

the pose is placed in an expected position and orientation. 

However, several extrinsic estimations have gone awry with the reason behind it difficult to 

determine. To provide an example of these occurrences consider the following use of the same data 

and algorithm but accompanied with the RANSAC optimization, results shown in the Figure 61. 

 

Figure 61: 3D graph for chessboard and wrong camera pose 

Both the position and orientation estimated are not what would be expected. Different data and 

different methods were used to try and determine the cause of this error. The poses are improperly 
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estimated using different methods on the same data, and on different data used by the same methods, 

making it difficult to determine where the error could be coming from. However, a couple of possible 

causes were theorized, one of human error and another pertaining to the analytical nature of the 

problem. The possible human error consisted of the positioning of the chessboard in parallel with the 

XY-plane, resulting in providing a data set of 3D coordinates, where the Z-coordinate was the same 

value for all points. This lack of variation in the Z-axis, possibly didn’t allow the PnP algorithms to 

correctly determine the configuration of the world frame. The other theorized error is related to the 

analytical ambiguity of using coplanar points to determine the pose, inducing the algorithm to converge 

to one of the possible solutions randomly and erroneously. To rule out both these theorized causes the 

chessboard was replaced by four Aruco markers, each providing their four corners as points for the pose 

estimation, shown in Figure 62. The markers we place parallel to the XY-plane, for easy calculation and 

graphical verification, but at different Z-coordinates, this ensures that the data set of 3D coordinates has 

different values in the Z-axis and that the points are not all in the same plane, ruling out both theorized 

causes. 

 

Figure 62: Aruco Markers and Identification 

Using this configuration to estimate pose still provided wrong results. The Figure 63 shows the 

cv2.solvePnPRansac function estimating pose badly yet again. Taking into consideration that RANSAC 

excludes points from the calculation if it determines those points to be outliers and that this new method 

is using only 16 points as opposed to the 54 points detected from the chessboard, using RANSAC might 

be excluding too many points inducing a wrong solution. When using Aruco markers with RANSAC the 

number of points will be increased by using not only the corners but also the marker’s centers and 

edge’s midpoints, resulting in 9 points per marker for a total of 36 points. 
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Figure 63: 3D graph of markers and wrong camera pose 
Red: Marker 1; Blue: Marker 2; Green: Marker 3; Yellow: Marker 4 

Considering for the use of a lower amount of points, RANSAC would be more of a liability then 

an advantage, the same data was used for pose estimation without RANSAC, Figure 64 shows the 

results of this estimation. Even though the markers didn’t fully resolve the problem they still rule out two 

possible problems and will be compared with the chessboard pattern performance regarding extrinsic 

calibrations. 
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Figure 64: 3D graph for markers and proper pose 
Red: Marker 1; Blue: Marker 2; Green: Marker 3; Yellow: Marker 4 

The function cv2.solvePnP returns the pose of the camera in the format of a rotation vector and 

a translation vector. The estimated rotation and translation matrices are given in reference to a camera 

coordinate system. Therefore, they need to be inverted to reflect the proper information in the world 

coordinate system. 

The 3-by-3 rotation matrix, 𝑅3𝑥3, and translation vector, 𝑡3𝑥1, compose the transformation matrix, 

H, as follows: 

𝐻 =  [
𝑅3𝑥3 𝑡3𝑥1

0 0 0 1
] ⟹ [

𝑅11 𝑅12
𝑅21 𝑅22

𝑅13 𝑡𝑥
𝑅23 𝑡𝑦

𝑅31 𝑅32
0 0

𝑅33 𝑡𝑧
0 1

] ⟹  3.4 

This matrix can be decomposed into two matrixes, one containing the rotation’s information, R, 

and another containing the translation’s information, T. 

⟹ 𝑇 ∗ 𝑅 ⟹ [

1 0
0 1

0 𝑡𝑥
0 𝑡𝑦

0 0
0 0

1 𝑡𝑧
0 1

] [

𝑅11 𝑅12
𝑅21 𝑅22

𝑅13 0
𝑅23 0

𝑅31 𝑅32
0 0

𝑅33 0
0 1

]  3.5 
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Inverting the product of two matrices is equal to the product of the inverse matrices in reverse 

order, as such: 

𝐻−1 = (𝑇 ∗ 𝑅)−1 = 𝑅−1 ∗ 𝑇−1 

R is a rotation matrix therefore is an orthogonal matrix. The inverse of the rotation matrix is its 

transpose.  

𝑅−1 = 𝑅𝑇 =   [

𝑅11 𝑅21
𝑅12 𝑅22

𝑅31 0
𝑅32 0

𝑅13 𝑅23
0 0

𝑅33 0
0 1

] 

The inverse of the translation matrix is the translation matrix with opposite signs on each of the 

translation components. 

𝑇−1 = −𝑇 = [

1 0
0 1

0 −𝑡𝑥
0 −𝑡𝑦

0 0
0 0

1 −𝑡𝑧
0 1

]  

Multiplying the now inverted matrixes together results in, 

𝐻−1 = [

𝑅11 𝑅21
𝑅12 𝑅22

𝑅31 0
𝑅32 0

𝑅13 𝑅23
0 0

𝑅33 0
0 1

] [

1 0
0 1

0 −𝑡𝑥
0 −𝑡𝑦

0 0
0 0

1 −𝑡𝑧
0 1

] = [

𝑅11 𝑅21
𝑅12 𝑅22

𝑅31 −(𝑅11 ∗ 𝑡𝑥+𝑅21 ∗ 𝑡𝑦 + 𝑅31 ∗ 𝑡𝑧)

𝑅32 −(𝑅12 ∗ 𝑡𝑥+𝑅22 ∗ 𝑡𝑦 + 𝑅32 ∗ 𝑡𝑧)
𝑅13 𝑅23
0 0

𝑅33 −(𝑅13 ∗ 𝑡𝑥+𝑅23 ∗ 𝑡𝑦 + 𝑅33 ∗ 𝑡𝑧)
0 1

] = 

= [𝑅3𝑥3
𝑇 −𝑅3𝑥3

𝑇 ∗ 𝑡3𝑥1
0 0 0 1

]  3.6 

Therefore, a camera’s orientation, in the established world frame, is given by 𝑅3𝑥3
𝑇 and the 

position is given by −𝑅3𝑥3
𝑇 ∗ 𝑡3𝑥1. With everything calculated and expressed properly, last step is to 

export it in the formats compatible with the software we intend to use for the 3D-reconstruction. 
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Chapter 4 

4 Results 

4.1 Hardware 

4.2 Intrinsic Calibration 

4.3 Extrinsic Calibration  
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4 Results 

4.1 Hardware 

4.1.1 Circular Configuration Scanner with Raspberry Pi Camera V2 

As described before, in section 3.2.3, this system uses the Raspberry Pi single board computer 

to control a camera and servo to perform a 360-degree scan of the stone. The entire hardware used for 

this proposed scanner can be seen in Figure 65. 

 

Figure 65: Circular Scanner Hardware 

The first image in  shows all the devices required for camera calibration and image acquisition, 

the Aruco markers and chessboard patterns, the servo motor, the Raspberry Pi and its camera 

supported by a 3D printed kinematic chain and a common pavement limestone rock used as a cheap 

small-scale alternative for the quarry limestone blocks. The second image provides a closer look at the 

servo motor, used to rotate the stone, and the kinematic chain, that supports the Raspberry Pi with its 

mounted camera. 

This Scanning system acquired the images, in Figure 66, with a resolution of (3280; 2464) pixels 

and a 30-degree angle between them. 
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Figure 66: Raspberry Pi Scanner Images 

4.1.2 Linear Configuration Scanner with Genie Nano camera 

This configuration is the proposed solution to improve Fravizel’s cutting machines. The cameras 

were incorporated into the machine to use its motion to both move and trigger the cameras, as seen in 

Figure 67. The image on the left shows where the camera’s housings were mounted and the image on 

the right shows the inside of the housing where the camera is attached. 
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Figure 67: Linear Scanner Hardware 

Genie Nano Cameras acquired the following images, in Figure 68 and Figure 69 with a resolution 

of (4112; 3008) pixels. These images are part of a set of images taken in 15-centimeter intervals in the 

machine’s rails, however for the sake of visualization, the pictures have a 240-centimeter interval 

between them. 

  

Figure 68: Genie Nano Scanner Images-Part 1 
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Figure 69: Genie Nano Scanner Images-Part 2 

Genie Nano Camera System’s Synchronicity Test: 

To test the Genie Nano Cameras synchronicity, both cameras were set up to be triggered 

externally by the same signal generated by a Raspberry Pi. The generated signal was set to trigger 

acquisition every 1 second. Both cameras were aimed to a browser stopwatch to obtain a direct 

timestamp for the acquisitions. 

 
 

 
 

  

Figure 70: Camera acquisitions through external trigger - Part 1 
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Figure 71: Camera acquisitions through external trigger-Part 2 

Figure 70 and Figure 71 shows the images acquired by this test, the results were organized in 

the following table. As we can see from Table 8, using an external signal to trigger the cameras results 

in a very satisfying synchronicity. This allows us to provide a positive answer to question, Q2, the 

scanning system was successfully incorporated into the existing Fravizel machine’s structure. 

Table 8: Camera trigger's timestamps 

Camera 1 (seconds) 2.253 3.252 4.251 5.247 6.247 

Camera 2 (seconds) 2.253 3.252 4.251 5.247 6.247 

4.2 Intrinsic Calibration 

The Intrinsic matrix and distortion coefficients vector are organized and shown in the following 

format: 

𝐼𝑛𝑡𝑟𝑖𝑛𝑠𝑖𝑐 𝑀𝑎𝑡𝑟𝑖𝑥 =  [
𝑓𝑥 0 𝑐𝑥
0 𝑓𝑦 𝑐𝑦
0 0 1

] 

𝐷𝑖𝑠𝑡𝑜𝑟𝑡𝑖𝑜𝑛 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠 =  [𝐾1 𝐾2 𝑃1 𝑃2 𝐾3] 

Where (𝑓𝑥, 𝑓𝑦), are the focal lengths and (𝑐𝑥 , 𝑐𝑦), are the principal point’s coordinates in 𝑋 − 𝑎𝑥𝑖𝑠 

and 𝑌 − 𝑎𝑥𝑖𝑠, respectively. 𝐾𝑖 , 𝑖 = 1, 2, 3 and 𝑃𝑗 , 𝑗 = 1, 2, are the radial and tangential distortion 

coefficients, respectively. 

4.2.1 Trust Webcam 

Python Calibration: 

𝐼𝑛𝑡𝑟𝑖𝑛𝑠𝑖𝑐 𝑀𝑎𝑡𝑟𝑖𝑥 =  [
1085.33 0 231.09
0 1082.48 247.71
0 0 1

]
𝛼=1
⇒  [

1075.68 0 227.97
0 1068.68 246.02
0 0 1

] 

Where 𝛼 is a scaling parameter by which we refine the intrinsic matrix with OpenCV function, 

cv2.getOptimalNewCameraMatrix(). 

𝐷𝑖𝑠𝑡𝑜𝑟𝑡𝑖𝑜𝑛 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠 =  [−0.1297 0.1486 −0.0073 −0.0175 6.2048] 
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This camera was calibrated in 68.13 seconds using 80 images. These intrinsic parameters result 

in a mean reprojection error of 0.05 pixels and a root mean square reprojection error of 0.41 pixels. 

MATLAB Calibration: 

𝐼𝑛𝑡𝑟𝑖𝑛𝑠𝑖𝑐 𝑀𝑎𝑡𝑟𝑖𝑥 =  [
1073.9 0 243.7
0 1072.3 239.8
0 0 1

]
𝛼=1
⇒  [

1067.62 0 240.96
0 1062.05 238.47
0 0 1

] 

𝐷𝑖𝑠𝑡𝑜𝑟𝑡𝑖𝑜𝑛 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠 =  [−0.1701 1.5050 −0.0067 −0.0160 −0.0951] 

These intrinsic parameters result in a mean reprojection error of 0.3918 pixels, with the mean 

reprojection error for each image provided shown in Figure 72. Using these intrinsic parameters to distort 

the images captured by the respective camera results in the images seen in Figure 73. 

 

Figure 72: Images Mean Reprojection Errors 



71 
 

 

Figure 73: Webcam Image undistortion 
Top: Original Image; Bottom Left: Python Undistortion; Bottom Right: MATLAB Undistortion 

4.2.2 Phone Camera (IPWebcam App) 

Python Calibration: 

𝐼𝑛𝑡𝑟𝑖𝑛𝑠𝑖𝑐 𝑀𝑎𝑡𝑟𝑖𝑥 =  [
1506.68 0 979.05
0 1507.14 545.00
0 0 1

]
𝛼=1
⇒  [

1534.47 0 983.72
0 1527.97 546.07
0 0 1

] 

𝐷𝑖𝑠𝑡𝑜𝑟𝑡𝑖𝑜𝑛 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠 =  [0.1653 −0.4934 0.0021 0.0027 0.4999] 

This camera was calibrated in 10.87 seconds using 60 images. These intrinsic parameters result 

in a mean reprojection error of 0.11 pixels and a root mean square reprojection error of 0.96 pixels. 

MATLAB Calibration: 

𝐼𝑛𝑡𝑟𝑖𝑛𝑠𝑖𝑐 𝑀𝑎𝑡𝑟𝑖𝑥 =  [
1502.6 0 976.5
0 1502.1 537.7
0 0 1

]
𝛼=1
⇒  [

1539.5 0 978.7
0 1523.8 537.4
0 0 1

] 

𝐷𝑖𝑠𝑡𝑜𝑟𝑡𝑖𝑜𝑛 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠 =  [0.1854 −0.6729 −0.0006 0.0019 0.9224] 

These intrinsic parameters result in a mean reprojection error of 0.5264 pixels, with the mean 

reprojection error for each image provided, shown in Figure 75. Using these intrinsic parameters to 

distort the images captured by the respective camera results in the images seen in Figure 74. 

Python MATLAB 

Original 
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Figure 74: Phone Image Undistortion 
Top: Original Image; Bottom Left: Python Undistortion; Bottom Right: MATLAB Undistortion 

 

Figure 75: Images Mean Reprojection Errors 

4.2.3 Raspberry Pi Camera V2 

Python Calibration: 

Python MATLAB 

Original 
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𝐼𝑛𝑡𝑟𝑖𝑛𝑠𝑖𝑐 𝑀𝑎𝑡𝑟𝑖𝑥 =  [
2647.41 0 1625.08
0 2649.74 1242.52
0 0 1

]
𝛼=1
⇒  [

2600.09 0 1607.71
0 2594.37 1231.05
0 0 1

] 

𝐷𝑖𝑠𝑡𝑜𝑟𝑡𝑖𝑜𝑛 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠 =  [0.1902 −0.4105 −0.0036 −0.0030 0.1085] 

This camera was calibrated in 124.03 seconds using 78 images. These intrinsic parameters result 

in a mean reprojection error of 0.1336 pixels and a root mean square reprojection error of 1.1248 pixels. 

MATLAB Calibration: 

𝐼𝑛𝑡𝑟𝑖𝑛𝑠𝑖𝑐 𝑀𝑎𝑡𝑟𝑖𝑥 =  [
2645.9 0 1634.1
0 2648.1 1246.4
0 0 1

]
𝛼=1
⇒  [

2612.5 0 1626.2
0 2612.7 1238.9
0 0 1

] 

𝐷𝑖𝑠𝑡𝑜𝑟𝑡𝑖𝑜𝑛 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠 =  [0.1963 −0.4424 −0.0027 −0.0015 0.1554] 

These intrinsic parameters result in a mean reprojection error of 0.7676 pixels, with the mean 

reprojection error for each image provided, shown in Figure 76. Using these intrinsic parameters to 

distort the images captured by the respective camera results in the images seen in Figure 77. 

 

 

Figure 76: Images Mean Reprojection Errors 
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Figure 77: Raspberry Pi Image Undistortion 
Top: Original Image; Bottom Left: Python Undistortion; Bottom Right: MATLAB Undistortion 

4.2.4 Genie Nano Camera System 

Python Stereo Calibration: 

Camera 1: 

𝐼𝑛𝑡𝑟𝑖𝑛𝑠𝑖𝑐 𝑀𝑎𝑡𝑟𝑖𝑥 1 =  [
2337.89 0 1954.44
0 2302.29 1262.92
0 0 1

]
𝛼=1
⇒  [

5076.85 0 2023.74
0 3990.98 1433.45
0 0 1

] 

𝐷𝑖𝑠𝑡𝑜𝑟𝑡𝑖𝑜𝑛 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠 1 =  [0.8528 −35.2602 −0.0369 −0.0468 443.56] 

These intrinsic parameters result in a mean reprojection error of 38.55 pixels and a root mean 

square reprojection error of 1.09 pixels. 

Camera 2: 

𝐼𝑛𝑡𝑟𝑖𝑛𝑠𝑖𝑐 𝑀𝑎𝑡𝑟𝑖𝑥 2 =  [
2369.29 0 1887.51
0 2301.63 1312.52
0 0 1

]
𝛼=1
⇒  [

4350.99 0 2020.21
0 3458.68 1433.69
0 0 1

] 

𝐷𝑖𝑠𝑡𝑜𝑟𝑡𝑖𝑜𝑛 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠 2 =  [0.3426 −8.8095 −0.0208 −0.0176 105.0084] 

Original 

Python MATLAB 
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These intrinsic parameters result in a mean reprojection error of 29.43 pixels and a root mean 

square reprojection error of 0.84 pixels. 

Python stereo calibration determines the rotation and translation matrix between the camera pair, 

such that: 

{
𝑅2 = 𝑅𝑅1
𝑇2 = 𝑅𝑇1 + 𝑇

 

Where (𝑅𝑖 , 𝑇𝑖), is the pose of the object relative to the 𝑖𝑡ℎ camera. 

𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑐𝑎𝑚𝑒𝑟𝑎𝑠 = [
−0.2776 −0.5233 0.8057
0.5625 0.5913 0.5778
−0.7788 0.6136 0.1302

] 

𝑇𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛 𝑣𝑒𝑐𝑡𝑜𝑟 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑐𝑎𝑚𝑒𝑟𝑎𝑠 = [
−3252.09
−1977.43
3687.30

] 

Lastly Python determines the essential, E, and fundamental, F, matrices through the following 

equations: 

𝐸 =  [

0 −𝑇2 𝑇1
𝑇2 0 −𝑇0
−𝑇1 𝑇0 0

] 𝑅 

𝐹 = 𝐼𝑛𝑡𝑟𝑖𝑛𝑠𝑖𝑐 𝑀𝑎𝑡𝑟𝑖𝑥 2−𝑇𝐸𝐼𝑛𝑡𝑟𝑖𝑛𝑠𝑖𝑐 𝑀𝑎𝑡𝑟𝑖𝑥 1−1 

Where 𝑇𝑖, are the elements of the translation vector 𝑇 = [𝑇0 𝑇1 𝑇2]
𝑇 

𝐸𝑠𝑠𝑒𝑛𝑡𝑖𝑎𝑙 𝑚𝑎𝑡𝑟𝑖𝑥 = [
−534.12 −3393.83 −2388.10
−3556.28 66.15 3394.21
−2378.24 −2957.78 −285.98

] 

𝐹𝑢𝑛𝑑𝑎𝑚𝑒𝑛𝑡𝑎𝑙 𝑀𝑎𝑡𝑟𝑖𝑥 = [
1.25 × 10−6 8.17 × 10−6 1.51 × 10−4

8.45 × 10−6 −1.62 × 10−7 −3.48 × 10−2

−1.04 × 10−4 8.83 × 10−7 1

] 

This stereo camera pair was calibrated in 461.14 seconds using 100 images per camera. These 

parameters, determined through stereo calibration, result in a root mean square reprojection error of 

1.42 pixels. 

MATLAB Stereo Calibration: 

Camera 1: 

𝐼𝑛𝑡𝑟𝑖𝑛𝑠𝑖𝑐 𝑀𝑎𝑡𝑟𝑖𝑥 =  [
2554.7 0 1506.8
0 2491.9 1296.1
0 0 1

]
𝛼=1
⇒  [

2337.9 0 2915.9
0 2061.4 1545.5
0 0 1

] 

𝐷𝑖𝑠𝑡𝑜𝑟𝑡𝑖𝑜𝑛 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠 =  [−0.0496 3.5578 −0.0282 −0.0945 −20.3199] 

These intrinsic parameters result in a mean reprojection error of 0.9142 pixels. 
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Camera 2: 

𝐼𝑛𝑡𝑟𝑖𝑛𝑠𝑖𝑐 𝑀𝑎𝑡𝑟𝑖𝑥 =  [
2617.4 0 2458.4
0 2776.1 340.3
0 0 1

]
𝛼=1
⇒  [

1576.3 0 3064.5
0 1845.1 1682.1
0 0 1

] 

𝐷𝑖𝑠𝑡𝑜𝑟𝑡𝑖𝑜𝑛 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠 =  [−1.4228 3.3854 0.0540 −0.0522 −4.3887] 

These intrinsic parameters result in a mean reprojection error of 0.8634 pixels. 

Stereo calibration outputs the pose of the second camera relative of the first camera: 

𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑐𝑎𝑚𝑒𝑟𝑎 2 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑡𝑜 𝑐𝑎𝑚𝑒𝑟𝑎 1 = [
−0.5234 −0.1411 0.8403
0.4943 0.7530 0.4343
−0.6940 0.6427 −0.3243

] 

𝑇𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑐𝑎𝑚𝑒𝑟𝑎 2 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑡𝑜 𝑐𝑎𝑚𝑒𝑟𝑎 1 = [
2384.4
−1378.2
4671.0

] 

Lastly the essential, E, and fundamental, F, matrices are determined such that: 

{
[𝑃2 1]𝐸 [

𝑃1
1
] = 0

[𝑃2 1]𝐹 [
𝑃1
1
] = 0

 

Where 𝑃1, are the coordinates of a point in image 1 and 𝑃2 are the coordinates of the 

corresponding point on image 2. 

𝐸𝑠𝑠𝑒𝑛𝑡𝑖𝑎𝑙 𝑚𝑎𝑡𝑟𝑖𝑥 = [
−499.1 −4115.8 −2555.2
−4448.3 1273.5 −2468.6
−1057.8 2476.7 575.9

] 

𝐹𝑢𝑛𝑑𝑎𝑚𝑒𝑛𝑡𝑎𝑙 𝑀𝑎𝑡𝑟𝑖𝑥 = [
−1 × 10−4 −6 × 10−4 −4.59 × 10−2

−6 × 10−4 2 × 10−4 −1.827 × 10−2

−1.71 × 10−2 2.4826 86.5887

] 

These parameters determined through stereo calibration result in a mean reprojection error of 

0.8888 pixels, with the mean reprojection error for each image pair provided, shown in Figure 78. Using 

these intrinsic parameters to distort the images captured by the respective camera results in the images 

seen in Figure 79. 
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Figure 78: Image Pairs Mean Reprojection Errors 
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Figure 79: Genie Nano Camera Image Undistortion 
Top: Original Images; Bottom: Undistorted Images 

4.3 Extrinsic Calibration 

4.3.1 Raspberry Pi Automated Scan Circular Configurations 

 Pose Estimation with Aruco Marker 

Figure 80 shows the Aruco markers image used for pose estimation and 3D plots of the estimated 

poses of the camera in the world coordinate system. In the 3D graphs, the black dot is the origin of our 

MATLAB 

Python 

Original 
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world frame, the Aruco corners are displayed by color-coded crosses and the cameras pose are 

displayed by the red dots with the blue, red and green lines indicating the camera’s position and X, Y, 

Z-axis respectively. 

 

Figure 80: Raspberry Pi extrinsic calibration results with Aruco and iterative algorithm 

 Pose Estimation with Chessboard 

Figure 81 shows the image used for pose estimation and 3D plots of the estimated poses of the 

camera in the world coordinate system. In the 3D graphs, the black dot is the origin of our world frame, 

the chessboard are displayed by color-coded crosses and the cameras pose are displayed by the red 

dots with the blue, red and green lines indicating the camera’s position and X, Y, Z-axis respectively. 
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Figure 81:Raspberry Pi extrinsic calibration results with chessboard and iterative algorithm 

Table 9 organizes the times, mean absolute and root mean square reprojection errors by 

algorithm and image used for comparison. The following chart displays the same information for easier 

visualization and comparison. 
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Table 9: Results for available algorithms 

RANSAC Pattern Solver 

Points 

(Inliers/Outliers) 

Time 

(Seconds) 

M.A.E. 

(Pixels) 

R.M.S.E. 

(Pixels) 

No 

Aruco 

Iterative 
36/0 

0.23 5.31 21.24 

EPnP 0.24 8.87 35.47 

P3P 
4/0 

0.24 4.89 19.57 

AP3P 0.24 4.89 19.57 

Yes 

Iterative 
15/25 

0.24 3.86 15.45 

EPnP 0.25 3.87 15.47 

P3P 
14/26 

0.24 4.02 16.09 

AP3P 0.25 4.02 16.09 

No 

Chess 

Iterative 
54/0 

23.5 0.14 1.05 

EPnP 23.2 8.42 61.86 

P3P 
4/0 

22.3 0.29 2.11 

AP3P 23.0 0.29 2.11 

Yes 

Iterative 
6/48 

21.79 45.20 337.14 

EPnP 22.79 18.07 132.82 

P3P 
52/2 

22.26 11.85 87.11 

AP3P 23.70 11.85 87.11 

 

Figure 82: Circular scanner Mean Absolute Error by algorithm 
Wrong pose estimations highlighted in red 
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As we can see from Table 9 and Figure 82, Aruco markers are faster to identify and result in an 

overall faster calibration than the chessboard pattern. However, the slowest calibration was still under 

half a minute, making any time concern negligible, this allows us to prioritize the accuracy of the different 

algorithms without much concern towards delays that might negatively impact the overall 3D 

reconstruction process efficiency.  

Considering the calibrations performed without RANSAC, while the points from the Aruco markers 

were non-coplanar and more varied coordinates-wise, the lesser amount of points seems to have 

resulted in higher mean absolute and root mean square reprojection errors compared to the calibration 

using the chessboard pattern. Using RANSAC resulted in entirely wrong poses across all algorithms 

applied on the chessboard pattern, using only 11% of points with Iterative or Efficient-PnP algorithms, 

and using 96% of points with P3P and AP3P, on the other hand the Aruco markers seem to fair better 

managing to estimate a decent approximations while only using 42% of the points with Iterative or 

Efficient-PnP algorithms and 39% of the points with P3P and AP3P algorithms.  

Overall all algorithms with or without RANSAC when applied on the Aruco markers, have resulted 

in the correct pose albeit with lower accuracy indicated by the reprojection errors, while the chessboard 

pattern has with some algorithms resulted in entirely wrong poses, showing however great accuracy 

when it does work properly.  

Given that a small number of poses and patterns were used to test the algorithms, these results 

might not reflect the cause of their limitations or general behavior. 

4.3.2 Genie Nano Camera System Linear Configuration 

Figure 83 and Figure 84 shows the images used for pose estimation and 3D plots of the estimated 

poses of the camera in the world coordinate system, respectively. In the 3D graphs, the black dot is the 

origin of our world frame, the chessboard are displayed by color-coded crosses and the cameras pose 

are displayed by the colored dots with the blue, red and green lines indicating the camera’s position and 

X, Y, Z-axis respectively. 

  

Figure 83: Genie Nano System Images for pose estimation 
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Figure 84: Genie Nano System extrinsic calibrations 

Table 10: Results for available algorithms 

RANSAC Solver 

Points 

(Inlier/Outliers) Time 

(Seconds) 

Mean Absolute 

Reprojection Error 

(Pixels) 

Root Mean Square 

Reprojection Error 

(Pixels) 

Cam 1 Cam 2 Cam 1 Cam 2 Cam 1 Cam 2 

No 

Iterative 
54/0 54/0 

5.77 0.27 2.01 0.26 1.88 

EPnP 5.82 1.07 7.90 2.41 17.68 

P3P 
4/0 4/0 

5.85 0.43 3.17 0.42 3.11 

AP3P 5.81 0.43 3.17 0.42 3.11 

Yes 

Iterative 
50/4 26/28 

5.95 0.29 2.12 0.45 3.30 

EPnP 5.97 1.36 9.97 3.24 23.83 

P3P 
48/6 

46/8 5.84 0.89 6.50 2.51 18.42 

AP3P 49/5 5.78 0.89 6.50 2.33 17.12 
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Figure 85: Linear scanner Mean Absolute Error by algorithm 

Wrong pose estimations highlighted in red 

As we can see from Table 10 that all the calibrations take similarly little less than six seconds 

making time comparisons irrelevant, this allows us to prioritize comparing the accuracy of the different 

algorithms. From Figure 85 we can see that RANSAC has induced wrong estimation for the P3P and 

AP3P algorithms while using 87% and 90% of points respectively. The iterative algorithms, both with 

and without RANSAC, obtained a proper estimation with significant lower error than the estimation 

performed by the P3P and AP3P algorithms without RANSAC. The Efficient-PnP algorithms performed 

poorly, resulting in wrong estimations with and without RANSAC.  

It should be noted that while some pose estimations resulted in the wrong pose, its reprojection 

errors are not overtly higher than other correctly estimated poses. This led us to use the 3D plots, 

translation vector and rotations matrix as an added support towards evaluating the results. These 

evaluated wrong pose estimations are highlighted in the table and graphs in red. 

  

0

2

4

6

8

10

12

Iterative EPnP P3P AP3P

Mean Absolute Reprojection Error

Cam 1 Cam 2 Cam 1+Ransac Cam 2+Ransac



85 
 

Chapter 5 

 

5 Conclusions 

5.1 Future Work 
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5 Conclusions 

The categories by which 3D scanners are classified are Contact Scanners and Non-Contact 

scanner, with the latter being divided into active and passive categories. Given the dimensions of the 

objects in need of scanning, using contact scanning would require a coordinate-measuring machine with 

a work area large enough to cover the large objects. Additionally, these contact scanners are slow and 

only provide volumetric data, no allowing for surface reconstruction. These limitations led us to focus on 

non-contact scanners which do not require contact, are faster and possibly more cost-effective 

compared to contact scanners, depending on the type of non-contact scanner considered. Within this 

category, non-contact scanners are considered active if they generate some form of emission which 

reflection is captured as data to be used for reconstruction, and passive if the data acquired originates 

solely from naturally available emissions. Given that the desired applications are set in a quarry, the 

detection of the non-natural emissions would be hindered by the nature of the working conditions. The 

level of sun-provided brightness varies from day to day or even hour to hour, the dust present from 

routine quarry activities and many other aspects would interfere with the recording device’s ability to 

accurately capture the scanners emissions. For these reasons, we determined the most apt category of 

scanner for the application and working conditions is the non-contact passive scanner category. One of 

the proposed scanners was designed around the Fravizel’s cutting machine to reduce costs and improve 

data acquisition. 

The scanning system proposed to improve upon a quarry’s cutting process was design to be 

incorporated into the existing Fravizel’s cutting machine used by quarries. Succinctly, a non-contact 

passive scanner consists of a system of cameras aimed at the target object to acquired images of the 

object from different perspectives. For this system, a pair of stereo calibrated cameras was installed 

onto the cutting machine, using its infrastructure and mechanisms to support, move and trigger the 

cameras as synchronously as possible. The resulting images from a test scan were very clear and 

synchronized to the centisecond between the camera pair. 

For the purpose of advertising the stone blocks pictures have some limitations, pictures taken 

close enough to allow the surface to be evaluated wouldn’t capture the entire block given its dimensions, 

while a picture taken far enough away to capture the entire block might not allow the quality of the block’s 

surface to be appreciated. A compromise would be to take a picture of the entire block with high enough 

resolution to allow surface detail upon zooming, however a better alternative is using a 3D displayers 

that allows a 3D model to be rotated, for a full appreciation of the volumetric dimensions and allows the 

model to be zoomed in and out, to inspect the surface’s quality. A scanning system with a circular 

movement was proposed to acquire a set of pictures from perspectives in a 360-degree motion around 

the object. A small-scale version of this system was constructed, where a single camera remains 

stationary while the object is rotated, through the use of a servo motor, at consistent intervals between 

image acquisitions, simulating the motion of the camera itself around a known circle centered on the 

object. 
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The real-scale scanner consisted of two Dalsa’s Genie Nano C4020 cameras and accessories, 

such as protective housing, costing a total of 13 575,39€. This linear scanner produced scans of twelve-

megapixels synchronized images, and while the intrinsic calibration was sub-optimal the extrinsic 

calibration produced acceptable results with some algorithms, notably the iterative algorithm. The 

intrinsic calibration took 461,13 seconds to estimate the intrinsic values, resulting in high mean absolute 

reprojection errors, 38,55 and 29,43 pixels for camera 1 and 2 respectively, and badly estimated 

distortion coefficients can be seen by the undistorted images in Figure 79. This can be improved by 

using a set of images with the detectable chessboard pattern more evenly distributed around the field-

of-view, especially the edges of the field-of-view for better distortion coefficients estimation. Considering 

the use of a sub-optimal intrinsic calibration, the iterative algorithms resulted in correct extrinsic 

calibrations, with and without RANSAC, showing low mean absolute reprojection errors of 0.27-0.29 and 

2.01-2.12 pixels for camera 1 and camera 2 respectively, while P3P-based algorithms only estimated 

extrinsic parameters correctly without RANSAC, showing mean absolute reprojection errors of 0.43 and 

3.17 pixels for camera 1 and camera 2 respectively. The incorrectly estimated extrinsic parameters, 

using P3P-based algorithms, show mean absolute reprojection errors of 0.89 and 6.50 pixels for camera 

1 and camera 2 respectively. The efficient-PnP algorithms failed to properly estimate extrinsic 

parameters with and without RANSAC, showing for camera 1 and camera 2, mean absolute reprojection 

errors of 1.07 and 7.9 pixels without RANSAC and 1.36 and 9.97 pixels with RANSAC respectively 

However, with proper intrinsic values the algorithms that failed might function properly, conveying 

reliability to the extrinsic calibration process across all algorithms and circumstances. Considering that 

intrinsic calibration is only required if the cameras internal properties are altered between scans and that 

extrinsic calibration are required for each scan, the time consumption of a scan boils down to the time it 

takes to intrinsically calibrate the cameras divided by the number of scans performed, plus the time to 

acquire the images and perform the extrinsic calibration for each scan. Considering that the intrinsic 

calibration took no longer than 8 minutes and the extrinsic calibration slightly less than 6 seconds, the 

scanning process is accomplished nearly in the same time it takes to move the Fravizel’s cutting 

machine over the stone blocks. 

The small-scale circular scanner consisted of a Raspberry Pi 3B+, a Pi Camera v2, a continuous 

servo motor and a 3D printed kinematic chain, producing scans of eight-megapixel images. The camera 

was properly intrinsically calibrated, in 124,03 seconds, showing mean absolute reprojection error of 

0,13 pixel. Several methods were used to achieve accurate extrinsic calibrations, the chessboard pattern 

or four Aruco markers were used to generate world to image coordinate correspondences while different 

algorithms were used for comparison. The Aruco markers resulted in proper extrinsic calibrations across 

all algorithms used with and without RANSAC, albeit with higher mean absolute reprojection errors, of 

3.86 and 4.02 pixels respectively, when compared to extrinsic calibrations accomplished without 

RANSAC using the chessboard pattern, which resulted in mean absolute reprojection errors within 0.14 

to 0.29 pixels, with the exception of the efficient-PnP algorithm which incorrectly estimated extrinsic 

parameter, showing a mean absolute reprojection error of 8.42 pixels. Using RANSAC on the 

chessboard pattern improperly estimated extrinsic parameters with all algorithms, resulting in mean 
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absolute reprojection errors of 45.2, 18.07 and 11.85 pixels for iterative, efficient-PnP, and P3P-based 

algorithms respectively. 

5.1 Future Work 

While the proposed scanner’s data acquisition viability yielded positive results, it also showed 

room for improvement in the form of possible next steps and optimizations. Considering these scanners 

are a first step in a contribution to the quarry industry, some of the possible improvements are described 

subsequently. 

5.1.1 Second stereo camera pair for linear scanner 

Since the viability of the proposed solution must be tested for the desired application, the linear 

scanning system incorporated into Fravizel’s machine consisted of only one pair of stereo calibrated 

cameras, attached to parallel poles. Even if successful, this physical configuration leaves a portion of 

the stone blocks unreconstructed, corresponding to blind spots between the camera’s fields-of-view. 

This hole in the reconstruction can be easily minimized by adding another stereo pair of cameras, onto 

the cutting machine’s secondary portico, aimed at the blind spot of the first stereo camera pair. For the 

purpose of the cutting process, there is a higher emphasis on the volumetric aspect of the blocks over 

surface. However, there may be aesthetically unpleasant surfaces that quarries might prefer to remove 

at an acceptable loss of material, therefore, investment into surface reconstruction might be a future 

development. 

5.1.2 Establish Real scale Circular Configuration 

Given that the proposed small-scale circular scanner showed viability in obtaining the data for the 

reconstruction of good quality 3d models absent of blind spots, the next step would be to design a full-

scale version of this scanner and implement it on the processed stone blocks. The small-scale solution 

took the route of rotating the object itself instead of the camera out of practicality and efficiency, however 

the real application will be dealing with large, heavy, hard to rotate stone blocks instead of small 

pavement stones. For this reason, the full-scale application might not employ the proposed circular 

scanner configuration directly and instead could take one of two routes. A circular rail for the camera to 

move around the stationary stone blocks can be designed, or applying the proposed solution exactly, 

the stone blocks could be rotated while maintaining the camera in a known stationary position. The 

option that would require the rotation of the stone would be more appealing and cost-effective, if the 

quarries already have such a platform that rotates the stone blocks, requiring the simple installation of 

the camera and set it to be triggered externally by the encoder of the motor used to rotate the platform, 

similarly to the system implemented on the cutting machines. Once the 3D models are reconstructed, 

the use of a website with an 3D model player, would then allow quarries to showcase their products in 

a far more comprehensive, attractive and accurate way. 
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5.1.3 Surface Enrichment 

Through our research, active scanners were dismissed on account of the working conditions 

interfering with the capture of the scanner generated emissions, such as lasers or projections. However, 

a simple and economical addition can be made into the scanner to assist the reconstruction process 

when the working conditions allow it or in an application with a more controlled working area. 3D 

reconstruction through images is based on detectable features on the surface of the object across the 

set of images, the ability to reconstruct and the quality of the model is related with the amount and quality 

of these features. Considering the uniformity of limestone blocks texture and color-wise, a projector can 

be used to project noise function-based patterns onto the stone blocks to enrich possibly featureless 

surfaces, as shown in [52]. 
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Appendix 

A – Linear Scanner hardware budget 
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B – Image sensor optical and mechanical specifications 
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C – Optical Lens Specifications 
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D – Camera Housing specifications 

 

  



97 
 

E – Computer specifications 
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F – Fravizel machines installed on quarry 

 

 


